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In this paper, we perform direct numerical simulations (DNS) of turbulent boundary
layers with nominal free-stream Mach number ranging from 0.3 to 12. The main
objective is to assess the scalings with respect to the mean and turbulence behaviours
as well as the possible breakdown of the weak compressibility hypothesis for turbulent
boundary layers at high Mach numbers (M > 5). We find that many of the scaling
relations, such as the van Driest transformation for mean velocity, Walz’s relation,
Morkovin’s scaling and the strong Reynolds analogy, which are derived based on
the weak compressibility hypothesis, remain valid for the range of free-stream Mach
numbers considered. The explicit dilatation terms such as pressure dilatation and
dilatational dissipation remain small for the present Mach number range, and
the pressure–strain correlation and the anisotropy of the Reynolds stress tensor
are insensitive to the free-stream Mach number. The possible effects of intrinsic
compressibility are reflected by the increase in the fluctuations of thermodynamic
quantities (p′

rms/pw , ρ ′
rms/ρ, T ′

rms/T ) and turbulence Mach numbers (Mt , M ′
rms ), the

existence of shocklets, the modification of turbulence structures (near-wall streaks
and large-scale motions) and the variation in the onset of intermittency.

Key words: compressible turbulence, high-speed flow, turbulent boundary layers

1. Introduction
An essential part of the study of compressible turbulent boundary layers is to

check the validity of Morkovin’s hypothesis. The hypothesis, first proposed by
Morkovin (1962), is that, at moderate free-stream Mach numbers (M � 5), dilatation
is small and any differences from incompressible turbulence can be accounted
for by mean variations of fluid properties. This is the basis of the van Driest
transformation, a velocity scaling that accounts for the fluid-property variations to
collapse compressible flow data onto the ‘universal’ incompressible distribution. The
check for validity of Morkovin’s hypothesis consists primarily of experiments and
numerical simulations at moderate Mach numbers (Fernholz & Finley 1980; Guarini
et al. 2000; Pirozzoli, Grasso & Gatski 2004). Both experiments and numerical
simulations confirmed that at moderate Mach numbers, the essential dynamics of the
investigated supersonic turbulent boundary layers closely resemble the incompressible
pattern under analogous conditions.

† Email address for correspondence: pmartin@umiacs.umd.edu
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There are only limited studies of boundary layers at high Mach numbers. For
example, one particularly important experiment was performed at Mach 6.7 at NASA
Ames (Owen & Horstman 1972a ,b; Owen, Horstman & Kussoy 1975; Mikulla &
Horstman 1976). Similar measurements were done at Mach 7.2 by Baumgartner
(1997), at Mach 11 by McGinley, Spina & Sheplak (1994), and more recently at
Mach 7.2 by Sahoo, Schultze & Smits (2009). In terms of numerical simulations,
Martı́n (2004) performed direct numerical simulations (DNS) with free-stream Mach
numbers varying from 3 to 8. Maeder, Adams & Kleiser (2001) conducted DNS at
Mach numbers 3, 4.5 and 6. Both previous experimental measurements and numerical
simulations at high Mach numbers have shown that the mean profile followed the
standard semi-logarithmic profile when van Driest transformation is applied. Together
these data support the notion that the scaling laws for the mean flow are essentially
independent of Mach numbers.

However, the scaling with respect to turbulence behaviour is still not so clear.
Experimentally, two of the very few datasets on hypersonic turbulence measurements
using hot-wire anemometry, by Owen et al. (1975) and McGinley et al. (1994), showed
that the turbulence intensities were significantly smaller than seen in incompressible
flows and do not scale according to Morkovin. However, the data from the more
recent and preliminary experiment by Sahoo et al. (2009) for a flat-plate boundary
layer at Mach 7.2 using particle image velocimetry (PIV) gave much larger turbulence
intensities than the measurement by Owen et al. (1975) and scale better according to
Morkovin. Intrinsic difficulties exist in both measurements by hot-wire anemometry
and PIV. The hot-wire data might have suffered from poor frequency response
and/or suspect calibrations of the hot-wire anemometry used in the measurements,
as observed by McGinley et al. (1994), and the PIV measurement might also suffer
from low seeding density in the context of strong gradients. In addition, the reported
turbulence statistics might be influenced by the spatial resolution of the measurements,
namely the size of the hot wire or the interrogation volume for PIV.

Numerically, the DNS by Maeder et al. (2001) showed that the compressible profiles
of Reynolds stresses have a shape similar to the incompressible profiles, though they
are fuller in the wake region for higher Mach numbers. However, as they mentioned,
it remains to be assessed whether this is an artefact of their simulation caused
by the relatively short domain. So far, nearly all the comparisons of turbulence
quantities between numerical solutions and experiments for compressible boundary
layers are achieved only at moderate Mach numbers, and there are still no direct
comparisons between numerics and experiments for boundary layers with free-stream
Mach number above 5.

One purpose of the current study is to achieve direct comparison of numerical
results with the recent experimental data at Mach 7.2 by Sahoo et al. (2009), and
further investigate turbulence scalings with a wide range of free-stream Mach numbers
using DNS, which provides more detailed turbulence statistics than experiments.

Besides turbulence statistics, another purpose of the current study is to investigate
the effects of free-stream Mach number on coherent turbulence structures, since
recent laboratory and numerical experiments indicate that these structures play
a key role in wall-bounded turbulent flows at incompressible and compressible
conditions (Robinson 1991; Spina, Smits & Robinson 1994; Kim & Adrian 1999;
Adrian, Meinhart & Tomkins 2000; Ganapathisubramani, Clemens & Dolling 2006;
Hutchins & Marusic 2007; Ringuette, Wu & Martı́n 2008).

This paper is structured as follows. Flow conditions and simulation details are
given in § 2. Turbulence statistics are given in § 3. The strong Reynolds analogy and
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Case Mδ ρδ (kg m−3) Tδ (K) Tw/Tδ Reθ Reτ Reδ2 θ (mm) H δ (mm)

M0 0.30 0.0900 220.0 1.00 1514.7.6 569.9 1515.2 2.76 1.41 23.0
M3 2.97 0.0910 219.9 2.51 3028.6 486.9 1586.7 0.619 5.09 8.85
M4 3.98 0.0902 219.2 3.83 4093.7 438.2 1587.4 0.658 8.01 12.0
M5 4.90 0.0962 224.4 5.31 4931.7 416.5 1578.0 0.682 11.29 15.1
M6 5.81 0.0990 230.7 7.02 5775.1 412.8 1582.2 0.730 15.4 19.7
M7 6.89 0.0929 224.2 9.49 7207.3 391.7 1586.4 0.838 20.2 28.1
M8 7.70 0.0990 232.8 11.2 7508.3 397.5 1577.5 0.861 24.2 31.8
M12 11.93 0.0906 228.0 27.6 11356.4 376.8 1577.5 1.33 46.1 84.7

Table 1. Dimensional boundary-layer edge and wall parameters for the DNS database.

the turbulent kinetic energy budget are given in §§ 4 and 5, respectively. The effect
of compressibility is investigated in § 6. Turbulence structure analysis is given in § 7.
Finally, conclusions are drawn in § 8.

2. Simulation details
2.1. Flow conditions

To study Mach number effects, we use a DNS database of turbulent boundary
layers (Martı́n 2004, 2007) with nominal free-stream Mach numbers ranging from
3 to 12, with an additional incompressible reference case. The boundary-layer edge
conditions and wall parameters for the DNS database are given in table 1, which
provides boundary-layer edge Mach number, density and temperature, Mδ , ρδ and Tδ ,
respectively, and boundary-layer properties, namely momentum thickness θ , shape
factor H = δ∗/θ , with δ∗ being the displacement thickness, boundary-layer thickness δ,
and different definitions of Reynolds number, where Reθ ≡ ρδuδθ/µδ , Reτ ≡ ρwuτ δ/µw

and Reδ2 ≡ ρδuδθ/µw . We have used subscripts δ and w to denote quantities at the
boundary-layer edge and at the wall, respectively. Here uτ is the friction velocity
defined as uτ =

√
τw/ρw , with τw being the wall shear stress. For all cases, the wall

condition is isothermal and prescribed to be nearly the adiabatic temperature.
To isolate the effect of varying free-stream Mach number, it is desirable to match

the Reynolds number of the different cases. Here, we keep Reτ and Reδ2 nearly
constant, with insignificant variation of Reθ across the cases.

2.2. Numerical simulation parameters

Following Martı́n (2007), the computational domain size and grid resolution are
determined based on the characteristic large length scale, δ, and the characteristic
small, near-wall length scale zτ , respectively. The computational domain must be large
enough to contain a good sample of the large scales, while the grid resolution must
be fine enough to resolve the near-wall structures. The domain size (Lx × Ly × Lz),
the grid size (�x × �y × �z) and the number of grid points (Nx × Ny × Nz) are
given in table 2. We take the streamwise, spanwise and wall-normal directions to
be x, y and z, respectively. Uniform grids are used in the streamwise and spanwise
directions as �x+ and �y+, where the superscript (+) indicates scaling with inner
or wall values. Geometrically stretched grids are used in the wall-normal direction,
with zk = z2(α

k−1 − 1)/(α − 1). The governing equations, numerical method, boundary
conditions and initialization procedure are given in Martı́n (2007). The working fluid
is calorically perfect air.
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Case Lx/δ Ly/δ Lz/δ �x+ �y+ z+
2 α Nx Ny Nz

M0 8.3 2.4 4.0 7.9 3.4 0.10 1.070 600 400 110
M3 8.7 2.7 7.8 8.4 3.4 0.30 1.063 512 384 110
M4 8.8 2.5 8.8 7.5 2.9 0.29 1.064 512 384 110
M5 9.9 2.6 8.8 6.9 2.7 0.25 1.065 600 400 110
M6 9.7 2.9 9.7 7.8 3.1 0.30 1.064 512 384 110
M7 8.7 2.5 8.7 6.7 2.6 0.27 1.063 512 384 110
M8 9.4 2.6 9.3 7.3 2.7 0.30 1.063 512 384 110
M12 10.9 2.4 15.9 6.8 2.3 0.27 1.063 600 400 120

Table 2. Grid resolution and domain size for the DNS.

In the results that follow, both Reynolds and Favre averaging are used depending
on the simplicity of presentation and conventions used in the papers to which we are
comparing. The Reynolds average of f over the x- and y-directions will be denoted
by f̄ or 〈f 〉, and fluctuations about this mean will be denoted by f ′. The Favre
average over the x- and y-directions, f̃ , is a density-weighted average:

f̃ =
ρf

ρ
. (2.1)

Fluctuations about the Favre average will be denoted by f ′′.
To assess the adequacy of the domain size, streamwise and spanwise two-point

correlations for the streamwise, spanwise and wall-normal velocity components as
well as for density and temperature are plotted. Figure 1 shows that the streamwise
and spanwise two-point correlations are nearly zero at large separations for both
cases M3 and M12. Similar results can be shown for other cases.

The grid resolution can be assessed by conducting grid-convergence studies.
Figures 2(a) and 2(b) plot the r.m.s. of streamwise velocity normalized by friction
velocity and the r.m.s. of temperature normalized by mean temperature, respectively,
for M3 and M12 with different number of grid points. All the corresponding curves
collapse to within 1 %, indicating the grid is fine enough to converge the results. Grid
convergence has been checked for all the other cases.

Another indication of the adequacy of the resolution is the value of kmaxη, where
kmax is the maximum wavenumber in x and η is the local Kolmogorov scale. The
maximum and minimum of this value in current DNS are 1.7 and 0.7, respectively,
which is adequate. For comparison, the DNS of a supersonic boundary layer at Mach
2.5 conducted by Guarini et al. (2000) had values of 1.6 and 0.5 for the maximum
and minimum of kmaxη, respectively.

Further assessment of grid resolution near the wall can be conducted by comparing
with DNS-calculated skin friction Cf with well-established semi-empirical results.
Table 3 gives the DNS-calculated skin friction and the skin friction predicted by van
Driest II theory (van Driest 1956). It is shown that DNS-calculated skin frictions are
within 5 % of the van Driest II prediction for all cases.

DNS results have been compared with existing experimental data at both moderate
and high Mach numbers, including the experimental flow conditions of Debiève
(1983), Debiève, Gouin & Gaviglio (1981) and Fernholz et al. (1989) at M = 2.32 and
Reθ = 4450, and the experimental flow conditions of Sahoo et al. (2009) at M = 7.2 and
Reθ = 3300. The details of the comparison at the former conditions are given in Martı́n
(2007). Recent developments in PIV measurements allow for detailed velocity surveys
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Case Cf (Cf )vanDriestII

M0 4.08 × 10−3 3.86 × 10−3

M3 2.17 × 10−3 2.08 × 10−3

M4 1.61 × 10−3 1.55 × 10−3

M5 1.31 × 10−3 1.27 × 10−3

M6 1.08 × 10−3 1.07 × 10−3

M7 8.51 × 10−4 8.47 × 10−4

M8 7.80 × 10−4 7.96 × 10−4

M12 4.60 × 10−4 5.00 × 10−4

Table 3. Skin friction of DNS database against that predicted by van Driest II theory (van
Driest 1956) for different free-stream Mach number cases.
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Figure 3. (a–d ) Comparison between the DNS and the preliminary PIV experiment by
Sahoo et al. (2009) at Maδ 7.2 and Reθ approximately 3300.

at high Mach numbers. Figure 3 plots the comparison at M =7.2 and Reθ = 3300,
where the mean velocity and density and the streamwise and wall-normal turbulence
intensities are plotted for both the DNS and the preliminary experimental data. It is
shown that good agreement is achieved between DNS and the experiment. There are
discrepancies in the velocity intensities close to the wall, which is probably due to the
inaccuracy in the PIV data. Nevertheless, these are the first of presently developing
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Figure 4. Van Driest transformed velocity for different free-stream Mach number cases.

PIV measurements at such a high Mach number, and this is the first direct comparison
between a DNS and an experiment at Mach number greater than 5.

3. Turbulence statistics
For all cases, averages are computed over streamwise and spanwise directions of

each field; then an ensemble average is calculated over fields spanning over more
than 20δ/uδ , with uδ being the boundary-layer edge velocity. Using periodic boundary
conditions, the change in (δ∗, uτ , Cf ) across the fields for ensemble averaging is less
than 5 % and the flow can be viewed as a good approximation of a boundary layer
at a static station (see Xu & Martı́n 2004).

3.1. Mean flow

Figure 4 plots the van Driest transformed velocity ŪV D , for different Mach number
cases, which is defined as

ŪV D =
1

ūτ

∫ U

0

(Tw/T )1/2 dU. (3.1)

The profiles of ŪV D for various Mach number cases collapse extremely well. The
log region can be very well described by (1/κ)logz+ + C, with κ = 0.41 and C = 5.2.

One of the commonly used temperature–velocity relationships for zero-pressure-
gradient boundary layers is Walz’s equation or Crocco’s relation (Walz 1969):

T̄

T̄δ

=
T̄w

T̄δ

+
T̄r − T̄w

T̄δ

(
ū

ūδ

)
+

T̄δ − T̄r

T̄δ

(
ū

ūδ

)2

. (3.2)

Figure 5 shows the comparison between (3.2) and DNS results. It is shown that
there is excellent agreement for all the Mach number cases.

3.2. Turbulence quantities

Figure 6(a–f ) plots turbulence intensities and density-weighted intensities in
streamwise, spanwise and wall-normal directions across boundary layers for different
free-stream Mach number cases. It is shown that turbulence intensities decrease with
free-stream Mach number for all directions, and a much better collapse of the data
is achieved by Morkovin’s scaling, which takes into account the variation in mean
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Figure 5. Test of Walz’s equation, as expressed by (3.2) for cases with different free-stream
Mach numbers. Lines, DNS; symbols, Walz’s relation given by (3.2).

flow properties. A similar trend is observed for the Reynolds shear stress, as shown
in figure 7(a, b).

Figure 8(a, b) plots r.m.s. values of pressure fluctuation normalized by pw and
ρwu2

τ , respectively. It is shown that the magnitude of pressure fluctuations increases
significantly with increasing free-stream Mach number when normalized by pw . A
better collapse of the data is achieved when p′

rms is normalized by ρwu2
τ .

Figure 9(a, b) plots r.m.s. values of density and temperature fluctuations normalized
by mean values. Similar to the pressure fluctuation, we observe a dramatic increase
in the magnitude of fluctuations when the free-stream Mach number is increased.

4. Reynolds analogies
Morkovin (1962) proposed five strong Reynolds analogy (SRA) relations. Three of

them are as follows:

T ′′
rms/T̃

(γ − 1)M2
a (u

′′
rms/ũ)

≈ 1, (4.1)

−Ru′′T ′′ ≈ 1, (4.2)

Prt =
ρu′′w′′(∂T̃ /∂z)

ρw′′T ′′(∂ũ/∂z)
≈ 1. (4.3)

Figure 10(a) plots the relationship between r.m.s. temperature and streamwise
velocity fluctuations, as expressed by (4.1), for supersonic free-stream Mach number
cases. It is shown that the agreement of relation (4.1) is not perfect with all the Mach
number cases. Figure 10(b) shows that better agreement is achieved between current
DNS results and the modified Reynolds analogy of Huang, Coleman & Bradshaw
(1995), which is given by

T ′′
rms/T̃

(γ − 1)M2
a (u

′′
rms/ũ)

≈ 1

Prt (1 − (∂T̃t/∂T̃ ))
. (4.4)
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Figure 6. Turbulence intensities and density-weighted turbulence intensities of the (a, b)
streamwise, (c, d ) spanwise and (e, f ) wall-normal fluctuating velocity components for different
free-stream Mach number cases.

The improved performance of Huang’s version of the modified Reynolds analogy
is also demonstrated by the simulations of Guarini et al. (2000) and Maeder et al.
(2001).

Figure 11 plots the correlation between temperature and velocity fluctuations across
the boundary layer for different Mach number cases. It is shown that −Ru′′T ′′ is not
a strong function of free-stream Mach number. Through most of the boundary layer,
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Reynolds analogy by Huang et al. (1995), as expressed by (4.4) for supersonic Mach number
cases.
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u′′ and T ′′ are anti-correlated and −Ru′′T ′′ is around 0.6, similar to the results reported
by Guarini et al. (2000).

Figure 12 plots the turbulent Prandtl number across the boundary layer. Note that
Prt is insensitive to the free-stream Mach number condition and is close to unity in
most of the boundary layer.

5. Turbulent kinetic energy budget
The turbulent kinetic energy is defined as

k̃ =
1

2

ρu′′
i u

′′
i

ρ
, (5.1)

and the budget equation for turbulent kinetic energy (TKE) is, after assuming
homogeneity in the streamwise and spanwise directions, given by

∂

∂t
(ρk̃) + w̃

∂

∂z
(ρk̃) = P + T + Π + φdif + φdis + ST , (5.2)
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Figure 12. Plot of Prt for supersonic Mach number cases.

where

P = −ρu′′
i w

′′ ∂ũi

∂z
,

T = −1

2

∂

∂z
ρu′′

i u
′′
i w

′′,

Π = Πt + Πd = − ∂

∂z
w′′p′ + p′ ∂u′′

i

∂xi

,

φdif =
∂

∂z
u′′

i τ
′
iz,

φdis = −τ ′
ij

∂u′′
i

∂xj

,

ST = −w′′ ∂p

∂z
+ u′′

i

∂τij

∂xj

− ρk̃
∂w̃

∂z
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.3)

The terms in (5.2) can be interpreted as follows. The left-hand side is the substantial
derivative of the turbulent kinetic energy along a mean streamline; P is the rate
of production of turbulent kinetic energy due to the mean velocity gradient; T is
turbulent transport; Π includes the pressure terms (pressure diffusion and pressure
dilatation, respectively); φdif is the viscous diffusion; φdis is the viscous dissipation;
and ST represents terms that arise when the density is not constant. The first two
terms appear due to the difference between the Favre and Reynolds averaging and
the third term is the production term due to dilatation. Besides terms in ST , pressure
dilatation as well as dilatational dissipation are also due to non-constant density.

Figure 13(a, b) plots the terms in the budget of turbulent kinetic energy, normalized
by conventional wall variables (defined in terms of the mean density, viscosity and
shear stress at the wall) and ‘semi-local’ scaling (Huang et al. 1995) (replacing ρw

with ρ(z), uτ with u∗
τ ≡

√
τw/ρ(z) and z∗

τ ≡ µ(z)/(ρ(z)u∗
τ )), respectively. The sum of all

the budget terms has been included to demonstrate the overall balance and statistical
convergence. It is shown that although TKE budget terms scale well in inner scaling,
a better scaling is achieved when the data are scaled with local thermodynamic
quantities.
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6. Compressibility effects
6.1. Turbulence Mach number

An indicator for the significance of compressibility effects is the turbulence Mach
number, defined by

Mt =
(u′

iu
′
i)

1/2

a
. (6.1)

Figure 14(a) shows that the magnitude of Mt increases significantly with increasing
free-stream Mach number. The peak value of Mt increases from approximately 0.03 for
M0 to 0.44 for M12. The increase in Mt indicates stronger compressibility effects with
free-stream Mach number. A more significant increase is observed for the fluctuating
Mach number, M ′

rms , which is the r.m.s. fluctuation of the Mach number and thereby
includes temperature fluctuations, as shown in figure 14(b). Unlike the distribution of
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Figure 15. (a) Pressure dilatation Πd and (b) pressure–strain Π13 for different Mach number
cases normalized by production P .

Mt , the fluctuating Mach number develops a peak near the middle of the boundary
layer where both the velocity and temperature fluctuations are important.

It is commonly believed that 0.3 is the threshold of Mt above which compressibility
effects become important for turbulence behaviour (Smits & Dussauge 2006). The
effect of compressibility can be sought by investigating explicit dilatation terms that
arise from the non-vanishing velocity divergence such as pressure dilatation and
dilatational dissipation. It may also be reflected in pressure–strain correlations and
related to the anisotropy of the Reynolds stress tensor (Vreman, Sandham & Luo
1996).

6.2. Pressure dilatation and pressure–strain terms

One of the terms arising from the non-vanishing velocity divergence is the pressure
dilatation term. Figure 15(a) plots the pressure dilatation term Πd = p′(∂u′′

i /∂xi) for
different free-stream Mach number cases. To illustrate the relative importance of
Πd compared with relevant terms in the TKE budget, Πd is normalized by the
corresponding production term P = − ρu′′

i w
′′(∂ũi/∂z) in each case. It is shown that

the relative importance of Πd increases with increasing free-stream Mach number,
and the pressure dilatation term is small relative to the production term through most
of the boundary layer, with a maximum ratio less than 5 % for 0<z/δ < 0.8. Near
the boundary-layer edge, the ratio goes up to more than 10 % for M8 and M12, due
to the production term nearing zero.

In the study of compressible mixing layers, Vreman et al. (1996) found that the effect
of compressibility is to change the structure of the pressure field, which results in the
modification of the Reynolds stress anisotropy. Figure 15(b) plots the pressure–strain
term Π13 = p′((∂u′′/∂z) + (∂w′′/∂x)) normalized by production P = − ρu′′

i w
′′(∂ũi/∂z)

for different free-stream Mach number cases. Unlike mixing layers, the pressure–strain
term for boundary layers is insensitive to compressibility effects.

6.3. Dilatational dissipation

Another term arising from the non-vanishing velocity divergence is the dilatational
dissipation

φd =
4

3
µ

∂u′
i

∂xi

∂u′
k

∂xk

. (6.2)
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The solenoidal dissipation is defined as

φs = µω′
iω

′
i , (6.3)

where ω is the vorticity.
Figure 16(a) plots the ratio of φd to φs for different free-stream Mach number

cases. It is shown that in most of the boundary layer, the ratio increases significantly
with increasing free-stream Mach number but remains small, with a maximum value
less than 5 %.

Present approaches for modelling dilatational dissipation can generally be cast into
the form (Gatski 1997)

φd/φs = αF(Mt ). (6.4)

One of the simplest forms proposed by several authors (see Smits & Dussauge 2006)
is F =M4

t . When the ratio φd/φs is plotted against Mt (figure 16b), it is shown
that this simple form fails, similar to the results reported by Huang et al. (1995)
and Maeder et al. (2001). The failure of the simple form is not unexpected, since
the M4

t dependence of φd/φs resulted from analyses of flows with constant mean
density and temperature, and the presence of mean density or temperature gradients
in boundary layers can impose other dependencies. In particular, figure 16(a) shows
that the overall level of φd/φs apparently depends on the mean Mach number M .
The dependence of φd/φs on both Mt and M is consistent with the simple order-of-
magnitude analyses of Smits & Dussauge (2006), who predicted that the fluctuating
divergence, ∂u′

i/∂xi , would have a mean Mach number dependence in addition to Mt

for flow with temperature inhomogeneities, and the mean Mach number dependence
is related to the link between kinetic and thermal energy.

6.4. Anisotropy effects

The ‘structure parameter’ is defined as a1 = −u′w′/2k. For incompressible flow, a1 has
been found to be approximately constant with values between 0.14 and 0.17 (Smits &
Dussauge 2006). Figure 17 plots the ‘structure parameter’ for various Mach number
cases. It is shown that a1 is approximately constant for 0.1 <z/δ < 0.9, where it
assumes values 0.14–0.16 for all the Mach number cases.
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A similar trend is observed for anisotropy ratios v′
rms/u

′
rms and w′

rms/u
′
rms , as shown

in figure 18(a, b), and both ratios assume values within the range of incompressible
flows (Smits & Dussauge 2006). The near-independence of the structure parameter
and anisotropy ratios on free-stream Mach numbers indicates that the change in
anisotropy due to compressibility is weak, at least for the present Mach number
range.

7. Structural analysis
7.1. Near-wall streaks

In this section, we investigate the effects of free-stream Mach number on near-wall
streaks. Figure 19(a–c) plots the instantaneous streamwise mass flux fluctuations at
z+ = 5 for M0, M3 and M12. The occurrences of very long regions of negative ρu

fluctuation are identified as streaks and are visible in the plots as elongated dark
regions. It is shown that streaks occur in all Mach number cases, and the superficial
similarity between the low-, moderate- and high-Mach-number cases is striking.
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As far as the spanwise spacing of near-wall streaks is concerned, figure 20 shows
that an increasing free-stream Mach number slightly decreases the streak spacing, and
the spanwise spacing is approximately 100 viscous wall units, similar to the values
reported by Runstadler, Kline & Reynolds (1963), Kline et al. (1967) and Bakewell &
Lumley (1967) in the study of low-speed turbulent boundary layers.

7.2. Large-scale motion

To demonstrate the large-scale turbulent bulges or large-scale motions (LSM),
which are responsible for the large-scale transport of turbulence in the outer layer,
figures 21(a) and 21(b) show a ‘numerical Schlieren’ visualization of a typical (x, z)
plane in the boundary layer for the Mach 3 and Mach 12 cases. The contours show
the magnitude of the in-plane gradient of density, |∇ρ|, scaled using an exponential
function NS that highlights the full range of values, NS =0.8 exp(−10|∇ρ|/|∇ρ|ref ).
It is shown that there are more regions of strong density gradient for M12 than M3,
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which might indicate significantly stronger compressibility and a larger number of
eddy shocklets for M12.

Further evidence of the existence of eddy shocklets in boundary layers is shown
by figure 22, in which the superposed contour lines of density and a grey-scale
rendition of divergence field, θ ≡ ∂uk/∂xk , for M3 and M12 are plotted. The black
areas in the figure are thin regions of very high negative divergence, which clearly
show the existence of shocks. The more frequent appearance of shocklets for M12 is
consistent with its relatively larger value of M ′

rms , as shown in figure 14(b). Since for
all cases shocklets have relatively small extent compared with the domain size, they
are expected to have only a minor influence on most turbulence statistics, as shown
in § 3.

In addition, the visualizations seem to show that the LSMs cause deeper incursions
of the external, irrotational flow for Mach 3 than those found for Mach 12, indicating
a decrease in the wall-ward extent of entrainment or intermittency as Mach number
increases. This trend is further demonstrated by intermittency function and flatness
factor, as shown in figure 23, for a number of different free-stream Mach numbers.
The intermittency function γ is defined as the fraction of time the flow is turbulent.
In the figure, the threshold value of (ρu − 3(ρu)′

rms )∞ has been used to distinguish
free-stream irrotational flow from boundary-layer flow. Both the flatness factor and
the intermittency function display an apparent Mach number dependence, where
the onset of intermittency (corresponding to the decrease in intermittency function
or the rise in flatness factor) occurs nearer the boundary-layer edge as the Mach
number increases. The hot-wire measurements of Mach 0.3 and 7 boundary layers
by Klebanoff (1955), Robinson (1986), Alving (1988), Spina & Smits (1987), Smits et al.
(1989) and Horstman & Owen (1972) have shown similar Mach number dependence.
The decrease in intermittency with increasing Mach number may be attributed to the
decrease in the cone of influence of a flow disturbance as Mach number increases,
and the turbulent–non-turbulent interface at the boundary-layer interface is confined
to a small region as the Mach number increases.
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To investigate the Mach number dependence of the size and inclination angle of the
typical eddies, figure 24 plots the isocorrelation contour maps in both (x–y) and (x–z )
planes for multiple Mach number cases. The isocorrelation contour maps are obtained
by fixing ‘origin’ points at z/δ = 0.2, within the logarithmic layer, and correlating them
with neighbouring points lying within either a 4δ × 2δ streamwise–spanwise window
or a streamwise–wall-normal window spanning 4δ in the streamwise direction and
from the upper buffer layer to the boundary-layer edge in the wall-normal direction.
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The results are then averaged over all the ‘origin’ points at z/δ = 0.2 and over all the
flow fields.

While similar structure size and inclination angle are observed between M0 and
M3, there exists an apparent decrease in the streamwise length and an increase in
structure angle as the free-stream Mach number increases from 3 to 12. A similar
study of structure parameters has also been conducted by Smits et al. (1989), in which
the isocorrelation contours were compared for two boundary layers (Mach 0.1 and
Mach 2.9) with Reynolds number differing by more than an order of magnitude,
and they found that the streamwise scales for Mach 2.9 case were two to three times
smaller than those in the Mach 0.1 case. Given the fact that our M0 and M3 cases
have similar structure sizes and angles and have been conducted with approximately
the same Reynolds numbers, the change observed in structure parameters by Smits
et al. (1989) might be due to Reynolds number effects rather than Mach number
effects. However, it is worth noting that the region of negative correlation is severely
diminished for the Mach 3 case relative to the incompressible case, indicating that
the M3 eddy’s influence on its surroundings is attenuated.

To demonstrate the wall signature of the coherent structures, we correlate the wall
shear stress with the streamwise mass flux. The correlation coefficient is defined by

Rτ ′
w(ρu)′ =

τ ′
w(x, y)(ρu)′(x + �x, y + �y, �z)

τ ′
w,rms(ρu)′

rms

, (7.1)

and it has been used by several researchers to infer the existence of coherent
structures (Brown & Thomas 1977; Ringuette et al. 2008; O’Farrell & Martı́n 2009).

Figure 25(a–f ) plots the isocorrelation contour maps of Rτ ′
w(ρu)′ for multiple

Mach number cases in the streamwise–wall-normal and streamwise–spanwise planes.
The contour plots in the streamwise–wall-normal plane indicate the existence of a
downstream-leaning structure for all Mach number cases, similar to the isocontour
maps of R(ρu)′(ρu)′ . Because this measure uses the wall shear stress, it is also an
indication of the dynamic strength and organization of the structure. Isosurfaces
of significant, positive Rτ ′

w(ρu)′ can be thought of as surfaces encapsulating the low-
momentum fluid in a hairpin packet corresponding to the model of Adrian et al.
(2000). Between the legs of a hairpin vortex, the ejection of fluid causes negative
(ρu)′ and negative τ ′

w , thus positive Rτw(ρu). Outside the legs, the sweep events cause
positive (ρu)′, which correlates with the negative τ ′

w between the legs to give negative
Rτw(ρu). Travelling together, multiple vortices form the packet; these coherent vortices
act in concert to, on average, create and surround a region of low-momentum fluid.
Both the relative size and strength are reflected in isocontours of Rτw(ρu). The weaker
positive and negative values of the correlation coefficient for higher Mach number
cases indicate less organization and weaker wall signatures of hairpin packets as
free-stream Mach number increases, which is consistent with the decrease in Cf with
increasing Mach number, as shown in table 3. In addition, the appearance of a bump
in the contour just upstream of �x/δ = 0 for the supersonic cases is possible evidence
of a change in inter- or intra-packet organization in the streamwise direction.

8. Conclusion
We have performed DNS of turbulent boundary layers with free-stream Mach

number from 3 to 12 to study the effects of Mach number on boundary-layer flow.
All the Mach number cases have similar Reynolds numbers with Reδ2 ≈ 1500. We
showed that many of the scaling relations used to express compressible boundary-layer
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Figure 25. (a–d ) Isocorrelation contour maps of Rτ ′
w(ρu)′ for cases M0, M3, M6 and M12,

respectively. The contour maps in the streamwise–spanwise plane are plotted at z/δ = 0.2 with
negative contours drawn as dashed curves.

statistics in terms of incompressible boundary layers also hold for the Mach number
range considered. In particular, we have shown that the van Driest transformed
velocity collapses different free-stream Mach results with incompressible results. It is
also shown that the r.m.s. velocity fluctuations of different Mach numbers collapse
using the mean density scaling suggested by Morkovin. The mean static temperature
field exhibits a quadratic dependency upon the mean velocity, as predicted by Walz’s
equation (3.2), for all the Mach number cases, for nearly adiabatic walls.

For the strong Reynolds analogy, we find that u′′ and T ′′ are not perfectly anti-
correlated (as predicted by the SRA, (4.2)), and Ru′′T ′′ remains approximately the same
between the different Mach number cases. The left-hand side of (4.1) weakly depends
on free-stream Mach number, and a better collapse across various free-stream Mach
number data is achieved using the modified version of SRA by Huang et al. (1995).
Also, the turbulent Prandtl number is nearly constant for most of the boundary layer
and insensitive to the free-stream Mach number.

In terms of the TKE budget, we show that the conventional inner scaling does not
perfectly collapse the data. However, the semi-local scaling that takes into account
local variation of fluid properties better collapses the data.

We find that explicit dilatation terms such as pressure dilatation and dilatational
dissipation remain small for the present Mach number range, and the pressure–strain
correlation and the anisotropy of the Reynolds stress tensor are insensitive to the
free-stream Mach number. However, the effect of intrinsic compressibility is reflected
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in several respects. The fluctuations of thermodynamic quantities (p′
rms/pw , ρ ′

rms/ρ,
T ′

rms/T ) as well as the turbulence Mach numbers (M ′
t , M

′
rms ) are increased dramatically

when the free-stream Mach number is increased, and, correspondingly, shocklets exist
and appear more frequently. The turbulence structure is also affected. Increasing
free-stream Mach number results in decreased spanwise spacing of near-wall streaks,
decreased streamwise extent of large-scale structures, increased structure angle and
waned wall shear stress signature. Additionally, we find that with increasing Mach
number, the onset of intermittency occurs nearer to the boundary-layer edge and
there is less entrainment of the irrotational free-stream flow into the boundary layer.

Given the relatively low Reynolds number for current simulations, further study
may be necessary to extend the results to high-Reynolds-number flows.

We thank A. J. Smits and D. Sahoo for providing PIV experimental data. This
work is supported by NASA under grant NNX08ADO4A.
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