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A direct numerical simulation of a reflected-shock-wave/turbulent-boundary-layer interaction at Mach 2.9 and

Re� � 2300 with a flow deflection through the incident shock of 12 deg is presented. A modified weighted essentially

nonoscillatory method is used for the spatial discretization of the inviscid fluxes. The numerical scheme has

previously been validated in the direct numerical simulation of a compression-ramp interaction against experiments

at matching conditions. The flowfield for the present simulation is visualized using a numerical schlieren technique,

and a movie of the flow reveals the unsteady shock motion. From the wall-pressure signal in the interaction region

and pressure measurements in the freestream, the characteristic low frequency of the shock motion is inferred and

found to agree with a scaling previously proposed. The evolution of themean and fluctuating flow quantities through

the interaction is studied. It is observed that the turbulence levels are greatly amplified in the downstream flow and

that significant departures from the strong Reynolds analogy occur.

Nomenclature

Cf = skin-friction coefficient
f = frequency
fs = frequency of shock motion
J = Jacobian matrix of the grid transformation
Lsep = separation length
M = freestream Mach number
p = pressure
Re� = Reynolds number based on �
Re�� = Reynolds number based on ��

Re� = Reynolds number based on �
Sij = rate-of-strain tensor
SL = dimensionless frequency of shock motion based on

Lsep and U1
T = temperature
u = velocity in the streamwise direction
v = velocity in the spanwise direction
w = velocity in the wall-normal direction
x = coordinate in the streamwise direction
y = coordinate in the spanwise direction
z = coordinate in the wall-normal direction
� = 99% thickness of the incoming boundary layer
�� = displacement thickness of the incoming boundary

layer
� = momentum thickness of the incoming boundary layer
� = density
h�i = averaged quantity

Subscripts

rms = root-mean-squared quantity
w = value at the wall
1 = freestream value

Superscript

0 = fluctuation from the mean
� = nondimensional value
� = nondimensionalization by inner (wake) scales

I. Introduction

T HE interaction of a shock wave and a turbulent boundary layer
(STBLI) is an important feature in many practically relevant

compressible flows. Experiments of separated STBLI have shown
(see Smits and Dussauge [1]) that the shock system exhibits a large-
scale streamwise motion with a frequency that is 1 to 2 orders of
magnitude less than the characteristic frequency of the turbulence
in the incoming boundary layer. Recently, Wu and Martín [2,3]
observed the low-frequency shock motion in a DNS of a 24 deg
compression-ramp interaction at Mach 2.9 and Re� � 2300. The
practical importance of STBLI stems from the fact that at the wall
along which the boundary layer is developing, the flow unsteadiness
makes itself felt as large-amplitude low-frequency fluctuations of the
pressure and heat transfer rate. In the case of super- and hypersonic
flight, these fluctuations may well be detrimental to the structural
and thermal integrity of the vehicle. The shock unsteadiness, together
with other aspects of STBLI such as the turbulence amplification
through the interaction, are not yet fully understood. A better under-
standing of STBLI is expected to lead to turbulence models that are
true to the physics, flow control methodologies, and novel super- and
hypersonic vehicle designs.

Most studies in the field of STBLI have been concerned with one
of the canonical flow configurations such as the compression-ramp,
reflected-shock, and fin interactions. In the present work, we
consider the reflected-shock interaction in which an oblique shock,
generated by some external source, impinges on a flat-plate turbulent
boundary layer. This configuration is nominally two-dimensional.
It is representative of, for example, the STBLI occurring in the air
intakes of super- and hypersonic engines. Despite its practical
importance, the reflected-shock interaction has received consid-
erably less experimental attention than the compression-ramp
configuration.

Green [4] performed experiments at Mach 2.5 and Re� � 4 � 105

for deflection angles through the incident shock varying from 2 to
10.5 deg. Measurements included surface-pressure distributions
and pitot surveys, and the flow was visualized using surface oil,
schlieren, and shadowgraph techniques. Two different interaction
patterns were observed, depending on the strength of the incident

Received 29May 2008; revision received 22December 2008; accepted for
publication 5 January 2009. Copyright © 2009 by the authors. Published by
the American Institute of Aeronautics and Astronautics, Inc., with
permission. Copies of this paper may be made for personal or internal use, on
condition that the copier pay the $10.00 per-copy fee to the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include
the code 0001-1452/09 $10.00 in correspondence with the CCC.

∗Graduate Student, Department of Mechanical and Aerospace Engineer-
ing. Student Member AIAA.

†Assistant Professor, Department of Mechanical and Aerospace
Engineering. Senior Member AIAA.

AIAA JOURNAL
Vol. 47, No. 5, May 2009

1173

http://dx.doi.org/10.2514/1.38821


shock. For weak incident shocks (deflection angles up to 5 deg), the
boundary layer remained attached and the shock reflected in an
essentially inviscid fashion. For stronger incident shocks, however,
the boundary layer separated and a more complicated interaction
pattern resulted, involving the principal reflected shock followed
downstream by an expansion fan and a sequence of compression
waves near the point of flow reattachment.

The experiments by Green [4] are at a relatively high Reynolds
number. Recently, a number of experiments have been performed at
much lower Reynolds numbers, and these are of particular interest in
the context of the present work, because they are within the reach of
DNS. Dussauge et al. [5] investigated shock reflections at Mach 2.3
and Re� � 5900 for deflection angles through the incident shock
varying from 7 to 9.5 deg. Fluctuating wall-pressure measurements
were made, and the low-frequency shock motion was analyzed.
Particle image velocimetry (PIV) measurements in streamwise–
spanwise planes revealed that the flow in the separation bubble is
three-dimensional. Dupont et al. [6] carried out PIV for the same
configuration in streamwise–wall-normal planes, and their results
show the presence of large-scale vortical structures in the separated
shear layer downstream of the reflected shock. These PIV data are
not time-resolved, but using instantaneous visualizations, Dupont
et al. found that the height of the separated-flow region and the
shock position are correlated, with a larger height corresponding
to an upstream location of the shock. This kind of statistical link
between the extent of the separated-flow region and the shockmotion
has previously been observed in experiments and simulations of the
compression-ramp configuration (see, for example, [3]).

Bookey et al. [7,8] and Ringuette et al. [9] performed experi-
ments for a 12 deg incident shock impinging on a boundary
layer at Mach 2.9 and Re� � 2400. These flow conditions
closely match the present DNS, allowing for a direct compari-
son between the two. Measurements in the experiments included
surface-pressure distributions and pitot surveys; the flow was
visualized using surface oil and CO2-enhanced filtered Rayleigh
scattering.

Garnier et al. [10] performed a large eddy simulation (LES) of
a reflected STBLI at Mach 2.3 and Re�� � 19; 132. The flow
deflection through the incident shock was 8 deg. As noted by the
authors, the simulation was not run for a long enough time to
investigate the low-frequency shock motion. Touber and Sandham
[11] also performed a LES of the reflected STBLI at Mach 2.3 and
Re�� � 2 � 104, matching the experimental conditions of Dussauge
et al. [5]. The low-frequency shock unsteadiness is present in their
simulations with a dimensionless frequency of around SL � 0:03,
and they studied various spanwise domain sizes to match the
experimental separation length. Pirozzoli andGrasso [12] carried out
a DNS of a reflected STBLI at Mach 2.25 and Re� � 3725 for a
deflection angle through the incident shock of 8.1 deg. A seventh-
order-accurate weighted essentially nonoscillatory (WENO) scheme
was used for the spatial discretization of the inviscid fluxes. At the
inlet of the computational domain, a laminar profile was prescribed,
and the flow was tripped to turbulence downstream by an alternating
suction/blowing wall-boundary condition. Pirozzoli and Grasso
proposed a mechanism whereby acoustic feedback in the separation
bubble drives the shock motion. However, the low-frequency shock
motion may not be captured in their DNS, because the lowest
reported dimensionless shock frequency SL is between 0.09 and
0.24. These values lie above the range of SL � 0:02–0:05 found by
Dussauge et al. [5] in a survey of STBLI experiments.

Wu and Martín [2] performed the DNS of a 24 deg compression-
ramp flow at Mach 2.9 and Re� � 2300. They validated their results
(in terms of separation length, mean wall-pressure distribution,
and evolution of the mean flow through the interaction) against
experiments by Bookey et al. [7,8] at matching conditions. In
addition, Ringuette et al. [13] validated the fluctuating wall pressure
in the DNS against the experiments by Ringuette and Smits [14].
In the present work, we perform the DNS of a reflected STBLI. We
use the same DNS code used by Wu and Martín [2] with the
same incoming boundary-layer conditions and similar overall
pressure rise.

The paper is organized as follows. In Sec. II, the governing
equations are described, followed in Sec. III by a presentation of the
computational setup. The DNS results are presented and discussed in
Sec. IV, in which we describe the general features of the flowfield as
well as analyze the turbulence amplification and shock motion.
Finally, in Sec. V, conclusions are drawn.

II. Governing Equations

The governing equations are the nondimensionalized conserva-
tive form of the continuity, momentum, and energy equations in
curvilinear coordinates. Theworking fluid is air, which is assumed to
be a perfect gas.
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In curvilinear coordinates, the flux termsG andH have similar forms
to F. The stress tensor ��ij is given by the Newtonian linear stress–
strain relation:
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The heat flux terms q�j are given by the Fourier law:

q�j ��
1

Re�
k�
@T�

@x�j
(6)

The dynamic viscosity is computed by Sutherland’s law:

Fig. 1 Flow schematic for reflected-shock-wave/boundary-layer inter-
action.
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�� 1:458 � 10�6T3=2=�T � 110:3� (7)

The nondimensionalization is done by �� � �=�1, u� � u=U1,
e� � e=U2

1, p� � p=�1U2
1, T� � T=T1, and �� � �=�1. The

thickness of the incoming boundary layer, �, is used as the
characteristic length scale.

III. Computational Setup

A schematic of the flow configuration for the present DNS is
shown in Fig. 1. Note that the wedge-shaped shock generator is
depicted for conceptual clearness only and is not included in the
DNS. Instead, the incident shock is generated by imposing the
appropriate Rankine–Hugoniot jump conditions at the inlet of
the computational domain. The flow deflection through the incident
shock is 12 deg in the DNS. The incoming boundary layer is at
Mach 2.9 andRe� � 2300, which closely matches experiments [7,8]
for the same configuration (see Table 1).

Figure 2 shows the computational domain, which measures 20�
in the streamwise direction, 2� in the spanwise direction, 9:5� in the
wall-normal direction at the inlet, and 9:9� at the outlet. To minimize
errors in the computation of the Jacobian matrices, the grid is com-
puted from analytical transformations, details of which are given by
Wu and Martín [2]. A sample grid is shown in Fig. 3. In the DNS,
the number of grid points is 1100 � 160 � 132 in the streamwise,
spanwise, and wall-normal directions, respectively, but for clarity of
presentation, the sample grid in Fig. 3 only shows every 32nd grid
point in the streamwise direction and every 8th in the wall-normal
direction. The grid is clustered near the wall in the wall-normal
direction and near the interaction region in the streamwise direction,
in which the range of the interaction region has been estimated from
the experiments [7,8]. The largest and smallest grid spacings in the
streamwise direction are�x� � 9:0 and 4.3, respectively, with grid
points clustered near x� 9�. At the inlet of the computational
domain, the first grid point above the wall is at z� � 0:2. The grid is
uniform in the spanwise direction with �y� � 3:9.

Because the numerical method in the present DNS is identical to
that used by Wu and Martín [2] for the DNS of a 24 deg compres-
sion ramp, we give only a brief description here. For the spatial
discretization of the inviscid fluxes, a fourth-order-accurate WENO
scheme is employed. The scheme is bandwidth-optimized (see
Martín et al. [15]). In addition, it uses limiters to reduce the nonlinear
error resulting from overadaptation of WENO in smooth regions of
the flow (see Taylor et al. [16]). Wu and Martín [2] reported that the

originalWENO (without limiters) is too dissipative for accurateDNS
of STBLI. For their compression-ramp DNS, they found that a
combination of absolute and relative limiters is necessary to
sufficiently reduce the dissipation of the numerical scheme. The
same limiters are used here. For the spatial discretization of the
viscous fluxes, a fourth-order-accurate central-difference scheme is
used. Time integration is performed with a third-order-accurate low-
storage Runge–Kutta algorithm.

Except for the incident shock, which is imposed as a boundary
condition at the inlet to the computational domain, the boundary
conditions are identical to those used by Wu and Martín [2] for the
compression-corner case. At the wall, a no-slip condition is used and
a temperature of Twall � 307 K is prescribed. At the inlet, the
rescaling technique of Xu and Martín [17] is used. The recycling
station is located 4:5� downstream from the inlet, as indicated in
Fig. 2. At the outlet and on the top boundary, a supersonic exit
condition is used; periodic boundary conditions are employed in the
spanwise direction. The boundary layer is initialized using the
method of Martín [18]. In this method, a set of coherent vortical
turbulence structures is introduced in the domain. By the lawofBiot–
Savart, these structures induce an initial pressure field. We have
found that this results in a small level of uncorrelated noise that gets
carried through the simulation, unless it is filtered. This has been
discussed in the context of the compression corner (Ringuette et al.
[13]), in which the same initialization is used and the level of
uncorrelated noise is found to be 4% in the magnitude of wall-
pressure fluctuations. Experiments show a noise level of 2% for the
same flow (see Ringuette and Smits [14]). The same level of
uncorrelated noise (4%) is found in the present simulations.

IV. DNS Results

Statistics are gathered using 561 flowfields spanning a total time
of 975�=U1 (i.e., approximately 10 ms). Figure 4 shows a typical
instantaneous numerical schlieren (NS) plot, in which the variable
is defined as

Table 1 Conditions for the incoming turbulent boundary layer

M Re� �, mm ��, mm Cf �, mm �1, kg=m3 U1, m=s T1, K

Experiment [7,8] 2.9 2400 0.43 2.36 0.00225 6.7 0.074 604.5 108.1
DNS 2.9 2300 0.38 1.80 0.00217 6.4 0.077 609.1 107.1
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Fig. 4 Instantaneous numerical schlieren for the DNS.
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NS � c1 exp	�c2�x � xmin�=�xmax � xmin�
 (8)

where x� jr�j and c1 and c2 are constants. We use c1 � 0:8 and
c2 � 10 in our analysis. This transformation enhances small density
gradients in the flowfield and resembles experimental schlieren
visualizations. A notable feature of the interaction is that the reflec-
ted shock originates well upstream of the point at which the incident
shock impacts the boundary layer. This upstream influence may
be understood from the flow sketch in Fig. 5, which illustrates the
principal features of a reflected-shock-wave/boundary-layer inter-
action in the case in which separation is present (taken from Délery
andMarvin [19]). The pressure gradient imposed by the shock is felt
upstream through the subsonic portion of the flow, causing the
boundary layer to separate well upstream of the shock impact point.
Given the presence of the separation bubble, the boundary layer is
constrained to move away from the wall, and the turning of the flow
leads to a series of compression waves emanating from the region
near the separation point (denoted by S in the flow sketch). Further
away from the wall, these waves coalesce to form the principal
reflected shock. In addition to the principal reflected shock, the flow
sketch in Fig. 5 shows two further left-runningwave groups: namely,
an expansion fan and a sequence of compression waves in the
downstream flow. The expansion fan originates at the point at which
the incident shock impacts the sonic line, which is also where the
separation bubble obtains its maximum height (typically of order �).
Through the expansion fan, the flow is turned back into the wall,
causing it to reattach downstream. Near the reattachment point
(denoted by R in the sketch), a sequence of compression waves
realigns the flow with the wall.

Although the expansion fan is not discernible in the instantaneous
numerical schlieren plot in Fig. 4, a sequence of compression waves
can clearly be seen in the downstream flow. Some of these compres-
sion waves are seen tomerge into the reflected shock, whereas others
originating closer to the exit of the computational domain do not
merge into the reflected shock within the extent of the computational
domain. The reflected shock is inclined at an angle of only 33 deg at
the exit of the computational domain, which is below the inviscid
value of 36 deg, as the computational domain is not long enough for
the shock to reach the inviscid strength.

A movie of subsequent schlieren visualizations‡ shows that the
shock foot undulates at a high frequency. The undulations are seen to
travel in the tangential direction along the shock, and with increasing
distance from thewall, they are increasingly damped. Sufficiently far
away from the wall, in the freestream, little undulations persist and

the shock exhibits a low-frequency large-scale motion in the
streamwise direction.

The shock motion is also apparent from Fig. 6, which shows a
time- and spanwise-averaged numerical schlieren plot for the entire
DNS data set. The reflected shock appears smeared, particularly near
the foot, owing to the unsteadiness. It is apparent from both the
instantaneous and themean schlieren visualizations that downstream
of the interaction, the density gradients are steeper, illustrating the
turbulence amplification through the shock system.

Figure 7 shows a typical instantaneous isosurface of themagnitude
of pressure gradient jrpj � 0:25p1=� for the DNS. It illustrates the
three-dimensional structure of the interaction.Away from thewall, in
the freestream, the reflected-shock sheet is quite uniform in the
spanwise direction. This must be contrasted with the shock foot,
which exhibits significant spanwise-wrinkling. In the particular
instantaneous realization shown in Fig. 7, a bulge is visible in the foot
region of the reflected-shock sheet (the bulge is highlighted by a
circle in Fig. 7).

The time- and spanwise-averaged skin-friction coefficient Cf is
plotted against streamwise distance in Fig. 8a. Results are shown
for the present reflected-shock DNS as well as for the 24 deg
compression-ramp DNS of Wu and Martín [2], centering both
profiles at the mean-flow separation point. Using the zero-skin-
friction criterion, we find that the mean-flow separation point for
the present DNS is located at x� 7:0�, where x is measured from the
inlet of the computational domain; the mean-flow reattachment point
is located at x� 14:6�, giving a separation length of Lsep � 7:6�.
This may be compared with the compression-ramp DNS [2], where
Lsep � 4:2�. The separation length in the compression-ramp DNS is
thus shorter, by a factor of 1:8, than in the present reflected-shock
DNS. Such a direct comparison between the two configurations is
meaningful, because the incoming flow conditions are identical
(Mach 2.9 and Re� � 2300) and the overall strength of the
interactions is similar. Green [20] showed that a reflected-shock
interaction with initial flow deflection 	 and a compression ramp
of angle 2	 have similar overall strength (i.e., the inviscid pressure
recovered downstream is similar). In addition to the difference in

Fig. 5 Flow schematic for the reflected-shock-wave/boundary-layer interaction with separation (from Délery and Marvin [19]).

Fig. 6 Time- and spanwise-averaged numerical schlieren for the DNS.

‡Available online at http://www.princeton.edu/mae/people/faculty/
martin/homepage/data-sets/movies/ [retrieved 30 September 2008].
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separation length, the skin-friction increases more rapidly down-
stream of reattachment in the compression-ramp case than in the
reflected-shock case.

Figure 8b compares the mean wall-pressure distribution for the
present reflected-shock DNS and the compression-ramp DNS of
Wu and Martín [2]. The pressure profiles have been shifted in the

streamwise direction to make the initial pressure rises coincide.
The origin of the coordinate system used in Fig. 8b corresponds
to the location of the domain inlet in the reflected-shock DNS, and
x� 9:8� is the location of the corner in the compression-ramp
DNS. It is apparent that the initial pressure rise is nearly identical in
both simulations. Furthermore, the pressure profiles exhibit a plateau
in both cases, which is indicative of separated flow. Although
the plateau pressure levels are similar, the streamwise extent of the
plateau is greater for the reflected-shock DNS than for the
compression-ramp DNS. This is consistent with the difference in
separation length between the two simulations, which was observed
previously from the Cf distribution (Fig. 8a). Downstream of the
separation region, the pressure increases gradually toward the
inviscid postshock pressure. The computational domain is not long
enough to see the complete recovery.

From a survey of experimental results for different STBLI
configurations covering a range of Mach and Reynolds numbers,
Dussauge et al. [5] found that the frequency of the shock motion
scales with the length of the separation bubble, Lsep, and the
freestream velocity U1; that is,

SL �
fsLsep

U1
(9)

where the range of values found in the survey is SL � 0:02–0:05.

Fig. 7 Isosurface of the magnitude of pressure gradient jrpj �
0:25p1=� showing the three-dimensional structure of the interaction for
the DNS. The circle highlights a bulge in the reflected-shock sheet.
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Fig. 8 Plots of a) time- and spanwise-averaged Cf distribution and b) mean wall-pressure distribution. For comparison, the DNS results of Wu and
Martín [2] are also shown for a 24 deg compression ramp at Mach 2.9 and Re� � 2300.
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From wall-pressure spectra and mass-flux measurements in the
freestream, Wu andMartín [2,3] found that in their DNS of a 24 deg
compression ramp the shock exhibited a low-frequencymotion in the
range of 0:007–0:013U1=�. This corresponds to a Strouhal number
of SL � 0:03–0:05, which is in agreement with the range of values
found by Dussauge et al. [5]. Because the separation length in the
present reflected-shock DNS is larger by a factor of 1.8 than in
the compression-ramp DNS, it is expected that, in accordance with
the scaling in Eq. (9), the frequency of the shockmotionwill be lower
by the same factor. We thus expect to have a low-frequency shock
motion in the range of 0:004–0:007U1=� in the present DNS. This is
verified and discussed in more detail subsequently when we analyze
the shock motion. Note that the DNS of the reflected-shock case is
computationally more expensive than that of the compression-ramp
case for two reasons: First, the reflected-shock interaction has a
larger extent in the streamwise direction (as indicated by the larger
separation length), thus requiring a spatially larger computational
domain. Second, the preceding scaling argument indicates, and the
subsequent DNS results confirm, that the shock frequency is lower,
thus requiring the DNS to be run for a longer time to capture the
shock motion.

Figure 9 shows surface flow visualizations from experiments [7,8]
for a 12 deg reflected-shock configuration at conditions matching
those of the present DNS (see Table 1). The separation length is seen
to vary significantly in the spanwise direction, indicating that the
flow is three-dimensional. There are two principal reasons for this:
the shock generator used in the experiments does not span the entire
width of the wind tunnel, and the flow is affected by the boundary
layers developing on the tunnel sidewalls. Significant flow three-
dimensionality is also seen in the experiments by Dussauge et al. [5]
for a 9.5 deg shock impinging on a turbulent boundary layer at
M � 2:3 and Re� � 5900. In addition to observing a surface flow
pattern similar to that shown in Fig. 9, PIV measurements reveal a
highly-three-dimensional downstream flow with a pair of tornado-
like vortices extending to a height of approximately 0:5� above
the wall.

Although the present DNS and the experiments [7,8] are
nominally at the same conditions, it is clear that the actual flows
are fundamentally different. The experimental flow is seen to be
three-dimensional, whereas the numerical flow is homogeneous in
the spanwise direction, in which periodic boundary conditions are
used.As a result, no direct comparison is possible. Performing aDNS
including the experimental spanwise length and wind-tunnel side-
wall boundary conditions is not feasible. To illustrate the differences
between the DNS and experiments further, the mean wall-pressure
distributions are plotted in Fig. 10. The experimental data [7,8] have
been obtained along the centerline of the interaction in which the
streamwise extent of the separation bubble is largest, as can be seen
form the surface oil visualizations in Fig. 9. No reference point is
given in the experiments. Therefore, the profile from the experiments
is shifted in the streamwise direction to make the two profiles match

at separation. It is apparent from Fig. 10 that the pressure plateau is
significantly longer in the experiments than in the DNS. This is
consistent with the fact that in the experiments, the separation length
is found to be 10:5� along the tunnel centerline, which is significantly
larger than the value of 7:6� observed in the DNS.

Although direct validation of the DNS against the experiments
[7,8] is not possible, we stress that because the simulation code is
general and shock-location-independent and has been validated by
Wu and Martín [2] for the compression-corner case, we perform the
present DNS of the reflected-shock case with confidence.

The shock motion may be inferred from wall-pressure signals.
Figure 11a shows the wall-pressure signals at different streamwise
locations for the DNS. Of particular interest is the signal at the
location x� 7:1�, which is near the mean-flow separation point. At
this location, the pressure is seen to oscillate with a low frequency
between the upstreamvalue (as represented in the plot by the signal at
the location x� 2�) and the value downstream of the reflected shock
(as represented in the plot by the signal at the location x� 9:5�). This
large-amplitude low-frequency oscillation of the wall pressure at
x� 7:1� may be attributed to the motion of the shock across this
point. We draw attention to the fact that the present DNS is at low
Reynolds number and the pressure trace at x� 7:1� varies relatively
smoothly between the upstream and downstream states. It does not
show the intermittency that is typical in high-Reynolds-number
flows (see also Wu and Martín [2] and Ringuette et al. [13]).

The premultiplied power spectra for the pressure signals are
shown in Fig. 11b. The spectra are normalized by the square of the
local mean wall pressure, and they have been bin-smoothed using

Fig. 9 Three-dimensional flow pattern observed in experiments [8]: a) surface flow visualization and b) sketch of the surface streamline pattern.
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Fig. 10 Mean wall-pressure distribution from DNS and experimental
data (Bookey et al. [7,8]).

1178 PRIEBE, WU, AND MARTÍN



100 bins. In the incoming boundary layer, at x� 2�, the most
energetic frequency is broadband in the range of 0:1–1U1=� (10–
100 kHz) and is due to the turbulence. The spectrum for the location
x� 7:1�, near the mean-flow separation point, also has significant
energy in this range, but the dominant frequency is much lower. It
lies in the range of 0:002–0:006U1=� (190–560 Hz) and may be
attributed to the low-frequency shock motion. Further downstream,
in the separated flow (x� 9:5�) and past the reattachment point
(x� 17:3�), the spectra show less energy content at the low

frequency of the shock motion, although it is still significant as
compared with the upstream boundary layer. However, the most
dominant frequency has shifted back to the range associated with the
turbulent motions.

The frequency of the shockmotion has thus been inferred from the
wall-pressure signals to be 0:002–0:006U1=�. This corresponds to
a Strouhal number of SL � 0:015–0:046, which is in the range of
values given by Dussauge et al. [5].

A. Boundary-Layer Evolution

Figure 12 plots van Driest-transformed mean velocity profiles at
different streamwise locations. In the incoming boundary layer,
the velocity profiles show a logarithmic region that extends from
approximately z� � 30 to 90. The relatively small extent of the
logarithmic region is attributable to the low Reynolds number in the
DNS. Because wall-scaling has no physical justification in separated
flow, no profiles are given in the region x� 7:0–14:6�, where the
mean flow is separated. Three profiles are shown in the flow
downstream of mean-flow reattachment (x� 15:4�, 16:9�, and
17:7�), all of which display a characteristic dip below the log
law, indicating that the boundary layer is out of equilibrium and does
not recover within the length of the computational domain. The
characteristic dip below the log law has also been observed in the
DNS of a compression ramp by Wu and Martín [2], as well as in
compression-ramp experiments at high Reynolds numbers (see, for
example, Smits and Muck [21]).

Figure 13 plots the mass-flux turbulence intensity at different
streamwise locations for the DNS. Downstream of the interaction,
the mass-flux turbulence intensity is amplified by a maximum factor
of about 4. This may be compared with an amplification factor of 5
reported byWu andMartín [2] for the DNS of the compression-ramp
case with identical inflow condition and similar overall pressure rise
through the interaction. A notable difference between the two con-
figurations, however, is that the compression-ramp configuration
involves streamline curvature, whereas in the reflected-shock config-
uration, there is no net streamline curvature. According to Smits and
Dussauge [1], concave streamline curvature is expected to enhance
turbulence amplification, and this may well explain why the maxi-
mum mass-flux turbulence amplification factor is found to be larger
in the compression-ramp DNS than in the present reflected-shock
DNS. Also from Fig. 13, in the separated-flow region (x� 10�), the
peak of the mass-flux turbulence intensity occurs at z� 1:2� above
the wall. This location agrees well with the location of themean-flow
sonic line, which lies just above the edge of the separation bubble.
Consequently, it may be hypothesized that the peak in the mass-flux
turbulence intensity is due to turbulent structures in the separated
shear layer. Further downstream, the peak in the mass-flux turbu-
lence intensity is seen to move closer to the wall.
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Figure 14 plots various components of the Reynolds stress tensor
at different streamwise locations for the DNS. It is apparent that the
Reynolds stresses are amplified significantly through the interaction.
In particular, the streamwise component �u0u0 and the spanwise
component �v0v0 are amplified by a maximum factor of about 10.
The wall-normal component �w0w0 is amplified slightly more, by a
maximum factor of about 18. The largest amplification factor is seen
in the shear component �u0w0 and is about 21. These values may
once again be compared with the DNS of the compression ramp by
WuandMartín [2]. It is important to note, however, that the reference
values for the Reynolds stresses in the incoming boundary layer that
were observed byWuandMartín are different from those observed in
the present reflected-shock DNS, although the incoming boundary-
layer conditions are the same. This may be explained by the fact that
Wu and Martín used less samples and that their stress profiles
were less converged than those reported here. To allow for direct
comparison between the two data sets, we have recomputed the
amplification factors reported by Wu and Martín using the upstream
reference values for the Reynolds stresses observed in the present
DNS. We find that the observed maximum amplification factors for
�u0u0, �w0w0, and �u0w0 are smaller in the present reflected-shock
DNS than in the compression-ramp DNS (i.e., the amplification
factor is about 10 for �u0u0 in the present DNS, as compared with 12
in the compression-corner DNS, 18 vs 22 for �w0w0, and 21 vs 27 for
�u0w0). For �v0v0, the observed amplification factor is slightly larger
in the reflected-shock DNS (10, as compared with 8 for the
compression-ramp DNS).

The strong Reynolds analogy (SRA) relates the velocity fluctua-
tions in a turbulent boundary layer to the temperature fluctuations.
The SRA relations are given by

����������
hT 02i

p
~T
� �
 � 1�M2

����������
hu02i

p
~u

(10)

RuT �
hu0T 0i����������
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p ����������
hT 02i

p � constant (11)

where a tilde in the equations denotes Favre-averaging. Figure 15
shows

T 0rms ~u

�
 � 1�M2u0rms
~T

and RuT at different streamwise locations for the DNS. It is apparent
from Fig. 15a that in the incoming flow, the SRA relations are
satisfied over most of the boundary layer, with RuT approximately
equal to�0:7. A significant departure from the SRAonly occurs near
the wall and close to the boundary-layer edge. Inside the interaction
region, at x� 8:5� and 13:8�, the SRA relations are still satisfied
reasonably well in the outer part of the boundary layer (z > 0:5�),
whereas they do not hold in the inner part. Figure 15d plots the SRA
relations at x� 16:9�, downstream of the mean-flow reattachment
point. It is apparent that although the flow shows signs of recovering
to the equilibriumbehavior seen upstream,major departures from the
SRA are still present, particularly in the inner part of the boundary
layer (z < 0:5�). This corroborates the conclusion, drawn previously
by looking at the van Driest-transformed velocity profiles, that the
flow downstream of the interaction does not recover to equilibrium
within the length of the computational domain.

Figure 16a plots �RuT at different wall-normal locations for the
present DNS. The data at z� � 20 are qualitatively different from
the other wall-normal locations in that these data do not display a
leading peak near the point of mean-flow separation. These kinds of
qualitative differences are not unexpected, because the location
z� � 20 lies in the near-wall region, in which significant departures
from the SRA relations have been observed in the discussion of
Fig. 15. For all other wall-normal locations, a peak in the value of
�RuT is observed near the mean-flow separation point. The mag-
nitude of this peak increases with increasing distance from the wall
and its location shifts slightly downstream. Presumably, it is the
presence of the reflected-shock foot that causes this peak. Another
notable feature of the distributions of �RuT is a minimum located in
the separated-flow region, which presumably is due to the presence
of the incident shock. It is apparent that the magnitude of the
minimum decreases with increasing distance from the wall. Down-
stream of the mean-flow reattachment point, there are signs of a
recovery toward the upstream equilibrium. For the outermost
locations shown (z� 0:5�, 0:7�, and 0:9�), values close to the up-
stream equilibrium value are attained at the exit of the computational
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Fig. 14 Reynolds stresses at different streamwise locations for the DNS.
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domain. This is not, however, the case for the locations in the inner
part of the boundary layer. Overall, wemay say that in the interaction
region, and downstream of it, the excursions from the equilibrium
value of �RuT are most pronounced close to the wall and become
weaker with increasing distance from the wall. This corroborates the
observation made in the discussion of Fig. 15 that throughout the
interaction, the SRA relations hold reasonably well in the outer
part of the boundary layer (z > 0:5�). For comparison, Fig. 16b plots
�RuT at different wall-normal locations for the compression-ramp
DNS of Wu and Martín [2]. The excursions from the equilibrium
value are generally weaker than for the reflected-shock DNS. Also,
no distinct minimum in the separation bubble is observed for
z� 0:5�, 0:7�, and 0:9�, which may be attributed to the fact that the
compression-ramp flow involves only a single shock wave, whereas
the reflected STBLI configuration involves both the reflected shock
and the incident shock.

B. Shock Motion

To analyze the shock motion further, we plot the intermittency of
the wall pressure in Fig. 17. The intermittency is equal to the fraction
of time that the shock spends upstream of a given streamwise
location. Possible values thus lie between 0 and 1,where 0means that
the shock is at no time upstreamof the particular streamwise location,
and a value of 1 means that the shock is at all time upstream of
the location. The intermittency in Fig. 17 is calculated using the
following criterion. If the instantaneous wall pressure exceeds the
upstreammean value by a significant amount (that is, if it lies above a
certain threshold value), then the shock is considered to be upstream
of that particular location; otherwise, it is considered to be down-
stream. In the present analysis, we use a threshold value of 1:13p1,
which corresponds to p1 � 4prms, where prms refers to the value in
the incoming boundary layer. An estimate for the streamwise extent
of the shock motion may be obtained from Fig. 17 in one of several
ways. The extent of the shock motion may be identified with the
streamwise distance over which the value of the intermittency
increases from, say, 0.1 to 0.9. Using this method, an estimate of
1:15� is obtained. Alternatively, the extent of the shock motion may

be identified with the inverse of the maximum slope of the
intermittency plot. This gives a value of 1:14�, which is similar to that
found using the first method.

Figure 18a plots three different pressure signals for the DNS, all
of which have been obtained at the same wall-normal coordinate
z� 1:6� but at different streamwise coordinates. The signals are
spanwise-averaged, and the time duration shown corresponds to the
full DNS data set. Except for turbulent fluctuations, the pressure
signal at the most upstream of the three locations (x� 6:7�) displays
no notable excursions from the freestream pressure p=p1 � 1:0.
This indicates that the reflected shock does not cross this point at
any time during the DNS; this point is located in the undisturbed
incoming freestream. This must be contrasted with the point at
x� 10:0�, which is located downstream of the reflected shock for
the entire DNS. This is apparent from the fact that the mean pressure
at x� 10:0� is higher by a factor of approximately 2.4 than at
x� 6:7�, which is consistentwith theflowhaving passed through the
shock. In addition, the turbulent fluctuations are stronger, owing to
the turbulence amplification through the shock. Of most interest,
however, is the pressure signal at x� 9:1�, located between the two
positions already discussed. The signal is seen to vary intermittently
between the upstream and downstream pressure levels, illustrating
the motion of the reflected shock across this point.

The premultiplied power spectra for the pressure signals are
shown in Fig. 18b. The spectra are normalized by the square of the
local mean pressure, and they have been bin-smoothed using 100
bins. In the upstream undisturbed flow (x� 6:7�), most of the energy
is contained in the frequency range of 0:1–0:3U1=� (�10–33 kHz),
which is associated with the turbulent fluctuations (the upper bound
of 33 kHz is, in fact, the Nyquist cutoff frequency, and the energetic
range may well extend to higher frequencies). Inside the shock
motion region (x� 9:1�), however, the most energetic frequencies
are in the range of 0:002–0:02U1=� (�0:2–2 kHz), which is about
1 order of magnitude lower than the characteristic frequency of the
turbulence in the incoming boundary layer. In the separated-flow
region (x� 10:0�), the spectrum is quite flat, with significant energy
at the low frequencies associated with the shock motion as well as at
the high frequencies associated with the turbulence. Also note that
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Fig. 15 SRA [Eqs. (10) and (11)] at different streamwise locations for the DNS: a) x� 4:6�, b) x� 8:5�, c) x� 13:8�, and d) x� 16:9�.
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the spectrum for x� 9:1� contains a significant, albeit not dominant,
peak at the recycling frequency 0:22U1=� (�20:5 kHz). This
forcing frequency lies in the range of frequencies associated with
the turbulence in the incoming boundary layer, and it is 1–2 decades
above the characteristic frequency of the shock motion.

The frequency of the shock motion is thus found to be
0:002–0:02U1=� from Fig. 18b, and this range agrees relatively
well with that found from the wall-pressure spectra in Fig. 11b:

namely, 0:002–0:006U1=�. We should note, however, that the wall-
pressure spectra have been computed with a total of 280,000
samples, in contrast to all the other statistics in this work, for which a
much smaller number of samples (561) has been used. Consequently,
the statistics in the low-frequency range of the wall-pressure
spectra in Fig. 11b are converged, whereas those in Fig. 18b are
not. Accordingly, more importance should be given to the results
deduced from the wall-pressure spectra, and more statistics are
required to draw conclusions from Fig. 18b.

Figure 19 shows the same quantities as Fig. 18, except that the
pressure signals are obtained further away from the wall at z� 4:5�.
The three streamwise coordinates are changed accordingly to ensure
that one point (namely, x� 13:0�) is located upstream of the reflec-
ted shock, another (x� 15:1�) is located inside the intermittent-
shock-motion region, and the last one (x� 17:0�) is located down-
stream of the reflected shock. Because most of the preceding
comments about Fig. 18 apply equally to Fig. 19,wemerely point out
a few notable differences. First, we note that the mean pressure
at the most upstream location x� 13:0� is p=p1 � 2:3 (and not
p=p1 � 1:0). This is due to the fact that the flow has already passed
through the incident shock. (See Fig. 4, in which at a wall-normal
distance of z� 1:6�, the reflected shock is upstream of the incident
shock due to the upstream influence, whereas it is the other way
around at z� 4:5�, as the reflected shock is downstream of the
incident shock.) Also note that given the proximity to the outlet of
the computational domain, it is difficult to obtain a clean pressure
signal that is fully downstream of the reflected shock. Consequently,
the signal at x� 17:0� still shows some intermittency.
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Comparison of the spectrum at z� 1:6� and x� 9:1� (shown in
Fig. 18b) with the spectrum at z� 4:5� and x� 15:1� (shown in
Fig. 19b) reveals an interesting aspect of the shock motion. Both
spectra are obtained in the intermittent-shock-motion region, one
near the foot of the shock close to the boundary-layer edge and the
other further away from the wall in the freestream. The dominant
low-frequency part of the spectra looks very similar, indicating that
the low-frequency component of the shock motion is essentially
unchanged aswemove away from thewall. However, there are some
differences in the high-frequency region associated with turbulence.
Even if we neglect the peak at the recycling frequency, it is evident
that at high frequency, the spectrum in the shock-foot region at
z� 1:6� and x� 9:1� is more energetic than further away from the
wall at z� 4:5� and x� 15:1�. This observation is consistent with
the earlier description of the shock motion as observed in a movie of
subsequent instantaneous schlieren visualizations. The shock foot
was seen to exhibit a high-frequency motion, and with increasing
distance away from the wall, these high-frequency perturbations
were seen to die out.

Figure 20 plots the intermittency of the pressure signals at
z� 1:6� and 4:5�. Identifying the extent of the shock motion with
the streamwise distance over which the value of the intermittency
increases from 0.1 to 0.9, we estimate a value of 1:1� at z� 1:6�
and 1:24� at z� 4:5�. These estimates are similar to those obtained
from the wall-pressure intermittency in Fig. 17. The relative lack of
smoothness of the intermittency curves in the freestream (Fig. 20) as
compared with that at the wall (Fig. 17) is due to the interpolation of
the pressurefield from the curvilinear computational grid onto planes
z� const and the small statistical sample size.

Another method for analyzing the shock motion is by using a
pressure-threshold criterion to detect the instantaneous shock
location and then trace its evolution in time. For a given flowfield
sample and at fixed y and z coordinates, we perform a sweep through
the computational domain in the streamwise direction. The sweep
starts at the inlet and stops as soon as the first point for which
p > pthreshold is encountered. That point is identified with the
instantaneous shock location. The procedure is repeated for every
spanwise location and for each of the 561 flowfield samples obtained
from the DNS. Figure 21a plots the time trace of the reflected-shock
location at two wall-normal locations: namely, z� 1:6� and 4:5�.
Spanwise-averaging has been performed and the value of the shock
location has been normalized by the local mean. At z� 1:6�, the
value of the threshold is pthreshold=p1 � 1:13, and at z� 4:5�,
it is 2:72, where the higher value is required because the flow at
z� 4:5� has already passed through the incident shock, whereas
at z� 1:6�, it has not.

Figure 21a shows that the time traces of the shock location at the
two wall-normal positions are very similar, displaying a predomi-
nantly low-frequency oscillation of the shock with amplitude of
order �. The only notable difference is that the signal has a richer
high-frequency content in the shock-foot region at z� 1:6� than
further away from the wall at z� 4:5�. The spectra in Fig. 21b
confirm that the signal at z� 1:6� has a larger energy content in the
high-frequency region. As previously noted, this is consistent with
the high-frequency motions of the shock foot seen in schlieren
animations of the DNS data. The dominant frequency, however,
is once more found to be in the range of 0:002–0:01U1=�
(�0:2–1:0 kHz) or about one order below the characteristic
frequency of turbulent motions in the incoming boundary layer.
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V. Conclusions

A DNS of a 12 deg reflected STBLI at Mach 2.9 and Re� � 2300
is performed. For the spatial discretization of the inviscid fluxes,
a linearly and nonlinearly optimized WENO scheme is used.
Experimental results for the same configuration as in the DNS and at
matching incoming flow conditions are available [7,8]. However, the
flow in the experiments is seen to be highly-three-dimensional and,
as a result, direct comparison with the DNS, which is homogeneous
in the spanwise direction, is not possible. We stress, however, that
because the DNS code is general and shock-location-independent
and has been validated against experiments for the compression-
corner case by Wu and Martín [2], we perform the present DNS
with confidence.

The evolution of the mean and fluctuating quantities throughout
the interaction is studied. The van Driest-transformed mean velocity
profiles show a characteristic dip below the log law downstream of
the interaction. At the exit of the computational domain, the dip is
still present, indicating that the boundary layer does not fully recover
to equilibrium within the extent of the computational domain. An
important aspect of STBLI is the amplification of turbulence through
the interaction. It is found that the mass-flux turbulence intensity is
amplified by a maximum factor of 4 in the DNS; the Reynolds shear
stress is amplified by amaximum factor of 21.We note that themass-
flux turbulence intensity is less amplified than in the compression-
corner DNS of Wu and Martín [2]. Because the incoming flow
conditions and overall shock strength are very similar in both
simulations, we hypothesize that the difference in turbulence

amplification is due to the significant streamline curvature in the
compression-ramp DNS. The SRA is found to hold in the incoming
boundary layer, whereas in the interaction region and downstream of
it, there are significant departures from the SRA, particularly for
z < 0:5�.

A movie of subsequent schlieren visualizations for the DNS
reveals that the flow is strongly unsteady. The reflected-shock foot is
seen to flap at a high frequency. Further away from the wall, in the
freestream, the flapping has subsided, and the shock exhibits a
large-scale low-frequency motion in the streamwise direction. The
frequency of the shock motion is inferred to be 0:002–0:006U1=�
from spectra of the wall pressure as well as from spectra of the
pressure in the freestream. In nondimensional terms, this frequency
corresponds to SL � fsLsep=U1 � 0:015–0:046, which lies in the
range found in a survey of STBLI by Dussauge et al. [5]. From the
intermittency of the pressure signals, the streamwise extent of the
shock motion is found to be of order �. Touber and Sandham [11]
performed LES of the reflected-shock case with varying spanwise
domain sizes. They found that reducing the spanwise length to very
narrow domains results in increased separation length due to the high
level of spanwise coherence. In particular, reducing the domain
width below 1:4� significantly affects the separation length, and a
reduction of 50% in the spanwise dimension (from 1:4�) results in
a 36% increase of the separation length. In contrast, they found that
the separation length asymptotes when increasing the domain size
beyond 1:4�. In fact, increasing the spanwise direction to 5 times 1:4�
only reduces the separation length by 13%. Our spanwise domain
size here is 2�, and the size of the separation length agrees well with
empirical scaling of Dussauge et al. [5].

The physical mechanism that drives the shock motion in the DNS
remains to be studied.
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