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Abstract

Weighted essentially non-oscillatory (WENO) methods have been developed to simultaneously provide robust shock-
capturing in compressible fluid flow and avoid excessive damping of fine-scale flow features such as turbulence. Under
certain conditions in compressible turbulence, however, numerical dissipation remains unacceptably high even after opti-
mization of the linear component that dominates in smooth regions. We therefore construct and evaluate WENO schemes
that also reduce dissipation due to one source of nonlinear error: the smoothness measurement that governs the application
of stencil adaptation away from the linear optimal stencil. Direct numerical simulations (DNS) include a one-dimensional
Euler solution and three-dimensional compressible isotropic turbulence. We find that the smoothness measurement mod-
ifications that we call the ‘‘relative smoothness limiter’’ and the ‘‘relative total variation limiter’’ each significantly enhance
thez grid-convergence properties of WENO schemes while generating, respectively, small and moderate additional compu-
tational expense. Moreover, we observe these techniques to be broadly effective regardless of flow configuration.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The detailed simulation of compressible turbulence requires numerical methods that simultaneously avoid
excessive damping of spatial features over a large range of length scales and prevent spurious oscillations near
shocks and shocklets (small transient shocks) through robust shock-capturing. Numerical schemes that were
developed to satisfy these constraints include, among others, weighted essentially non-oscillatory (WENO)
methods [1]. WENO schemes compute numerical fluxes using several different candidate stencils and form
a final flux approximation by summing weighted contributions from each stencil. Smoothness measurements
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cause stencils that span large flow field gradients to be assigned small relative weights so that a nearly discon-
tinuous shock would provide a weight of almost zero to any stencil containing it. In smooth regions, the rel-
ative values of the weights are designed to be optimal by some gauge such as maximum order of accuracy or
maximum bandwidth-resolving efficiency.

Jiang and Shu [2] cast the WENO methodology into finite-difference form and provide an efficient imple-
mentation of robust and high-order-accurate WENO schemes. Unfortunately, these schemes often generate
excessive numerical dissipation for detailed simulations of turbulence, especially for large-eddy simulations
(LES) [3]. WENO dissipation arises from two distinct sources: (i) the optimal stencil, which on its own
describes a linear scheme, and (ii) the adaptation mechanism, which drives the final numerical stencil away
from the optimal one. Bandwidth optimization can reduce the dissipation of the optimal stencil [4,5]; and
Martı́n et al. [5] demonstrate that such a bandwidth-optimized symmetric WENO method indeed reduces
numerical dissipation and provides accurate results for direct numerical simulations (DNS) of isotropic tur-
bulence and turbulent boundary layers.

Nonetheless, engaging the nonlinear WENO adaptation mechanism still causes significant local dissipation
that can negatively affect global flow properties. Though higher resolution compensates for this, in some cases
adequately increasing the number of grid points is not feasible. According to Martı́n [6], even linearly opti-
mized WENO schemes fail during LES of turbulent boundary layers because of insufficient distinction
between shock-containing and smooth regions on typical LES grids. Additionally, Wu et al. [7] have encoun-
tered disparities between DNS and experiments of shock/turbulent-boundary-layer interactions and have
determined that nonlinear WENO dissipation is responsible for the disagreement even at the highest possible
resolutions. There are two primary sources of nonlinear error: (i) the smoothness measurement that governs
the application of WENO stencil adaptation and (ii) the coefficients of the individual candidate stencils that
govern numerical accuracy when adaptation engages. We will address the first. Previous work in this partic-
ular area includes that of Wang and Chen [8], who have examined upwind-biased WENO methods in linear-
ized problems, and Henrick et al. [9], who have examined upwind-biased WENO methods in linear and
nonlinear problems. Neither has considered fully turbulent flow fields.

The purpose of this paper is to construct and evaluate linearly optimized WENO schemes that also reduce
dissipation due to the nonlinear error arising from the WENO smoothness measurement for DNS of com-
pressible turbulence. Section 2 briefly describes the WENO methodology. In Section 3, we present the moti-
vation for and derivation of two related techniques that overwrite smoothness measurement values with
limiting values under certain conditions in order to impede over-adaptation tendencies. Section 4 then dem-
onstrates the effects of these techniques on numerical simulations of a pseudoturbulent flow, the Shu–Osher
problem, and a fully turbulent flow, compressible isotropic turbulence. Conclusions are drawn in Section 5.

2. WENO Methodology

We describe the symmetric WENO methodology [4,5] in the context of the one-dimensional advection
equation,
ou
ot
þ o
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f ðuÞ ¼ 0 ð1Þ
This model equation represents the decoupled forms of equations belonging to any system of hyperbolic con-
servation laws after a transformation from physical into characteristic space. If the spatial domain is discret-
ized such that xi = iD, in which D is the grid spacing, and ui = u(xi), Eq. (1) may be cast into the
semidiscretized form
dui
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in which f̂ iþ1=2 is a numerical approximation of f(u(xi+1/2)). Once the right-hand side of this expression
has been evaluated, numerical techniques for solving ordinary differential equations, such as Runge–Kutta
methods, may be employed to advance the solution in time. In order to ensure stability, procedures that
approximate f(u) split it into f+(u), which has a strictly non-negative derivative, and f�(u), which has a strictly
non-positive one.
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WENO schemes compute f̂ þiþ1=2 through reconstructed interpolating polynomials on a number of candidate
stencils each containing r grid points. In the symmetric WENO method, there are (r + 1) stencils in total. The
one fully upwinded stencil ranges from (i � r + 1) to i, the one fully downwinded stencil ranges from (i + 1) to
(i + r), and the other stencils fall in between these two extremes. Fig. 1 provides a schematic of this arrange-
ment for r = 3. Throughout this paper, we will abbreviate any WENO implementation in which the candidate
stencils contain r points as ‘‘WENO-r.’’

If the flux approximation on stencil k, which contains r grid points, is designated qr
k and the weight assigned

to that stencil is xk, the final numerical approximation becomes
Fig. 1.
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Specifically, qr
k emerge from reconstructed polynomial interpolants of maximal order r and are defined as
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in which ar
kl are tabulated coefficients; and xk are normalized forms of weights Xk defined as
Xk ¼
Cr

k

ðeþ ISkÞp
ð5Þ
in which e prevents division by zero, ISk is a smoothness measurement that becomes large when discontinuities
are present within stencil k, and p may be varied to increase or decrease WENO adaptation sensitivity. p = 1
typically provides sufficient adaptation with minimal dissipation. In completely smooth regions, each stencil is
equally desirable, and xk revert to the optimal weights Ck. As formulated by Jiang and Shu [2],
ISk ¼
Xr�1
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in which qr
kðxÞ is a reconstructed interpolating polynomial for the flux that may or may not be the same as the

one that leads to qr
kjiþ1=2: in Eq. (4). Equivalently,
ISk ¼
Xr�1

l¼0

Xr�1

m¼0

dr
klmf ðui�rþkþlþ1Þf ðui�rþkþmþ1Þ ð7Þ
in which dr
klm are the coefficients that arise from Eq. (6).

The corresponding stencil diagram for f̂ �iþ1=2 is simply a mirror image of Fig. 1. Because the total number of
data points available to the symmetric WENO algorithm is 2r, its maximum order of accuracy is also 2r; how-
ever, the optimal stencils employed in the current work are bandwidth-optimized [4,5] such that only rth-order
accuracy can be guaranteed. The bandwidth-optimization process also introduces a small amount of artificial
dissipation to an otherwise neutrally stable optimal stencil to enhance its stability. In practice, the weight of
the fully downwinded stencil xr is artificially constrained to be no greater than the least of the others so that
other adverse stability effects are avoided.

The continuity of the WENO weighting process allows the performance characteristics of the final numer-
ical stencil to theoretically fall anywhere between those of the least favorable candidate stencil and those of the
S1S0

S3S2

i−2 i−1 i i+3i+1 i+2

fi+1/2

Symmetric WENO candidate stencils for approximating the numerical flux f̂ þiþ1=2 when the number of points per candidate stencil
3.
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optimal stencil. In order to gauge this variation quantitatively but efficiently in a flow field, Weirs [4] proposed
a combination of the adaptive stencil weights called the nonlinearity index (NI). It is essentially a measure of
the degree of departure from the optimal stencil and is defined as
NI ¼
Xr

k¼0

1� ðr þ 1ÞðXk=CkÞPr
l¼0ðXl=ClÞ

� �2
 !1

2

ð8Þ
This definition forces NI to always be non-negative, and only the optimal stencil can provide a value of zero. It
reaches its theoretical maximum, which is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðr þ 1Þ

p
, when any one candidate stencil is chosen exclusively. We

will often report NI in terms of NI 0, its value normalized by this maximum. Ideally, in smooth regions where
WENO adaptation is unnecessary, NI 0 � 1 so that the favorable performance capabilities of the optimal sten-
cil are realized.
3. Relative limiters

Because the optimal stencil of a WENO scheme provides optimal performance in smooth regions, any tech-
nique that discourages unnecessary adaptation can improve WENO dissipation characteristics in compressible
turbulence. This approach requires modification of the smoothness measurement but does not affect the can-
didate stencil coefficients akl in Eq. (4) or the optimal stencil weights.

When the reconstructed polynomial interpolant qr
kðxÞ in Eq. (6) is order-optimized (i.e. replicates tabulated

data exactly), the Taylor expansion of ISk yields
ISk ¼ D2½f 0ðuiÞ�2 þOðD4Þ ð9Þ
Ideally, in smooth regions where WENO adaptation is unnecessary, ISk should be of the order of e from Eq.
(5); in other words, ISk� 1. Now consider a linearly advected smooth sinusoidal function of nondimensional
wavenumber j (nondimensionalized by D):
f ðuðxÞÞ ¼ uðxÞ ¼ sin
jx
D

� �
ð10Þ
In this case, Eq. (9) becomes
ISkðxÞ ¼ j2 cos2 jx
D

� �
þOðD4Þ ð11Þ
Thus for smoothly varying functions, ISk < 1 requires j < 1, which corresponds to a grid resolution of
more than roughly six grid points per wavelength (PPW). To ensure that ISk < 0.1 more than 20 points
per wavelength are necessary. These restrictions indicate that the WENO smoothness measurement as de-
fined in Eq. (6) triggers adaptation too readily and thereby causes unnecessarily degradation of WENO
performance.

Jiang and Shu [2] suggest that the over-adaptation tendencies of WENO methods may be mitigated by rede-
fining the smoothness measurement ISk at points where it falls below a threshold value.
ISk ¼
0; ISk < aAL

ISk; otherwise

�
ð12Þ
In this procedure, effectual values of the absolute smoothness limiter aAL are arbitrary and strongly depend on
the specific flow field configuration. Because it is preferable to achieve wide applicability to general turbulent
flows, we propose a modified limiting procedure:
ISk ¼
0; RðISÞ < aRL

ISk; otherwise

�
ð13Þ
in which
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RðISÞ ¼ max0�k�rISk

eþmin0�k�rISk
ð14Þ
and in turn e is the value employed in Eq. (5). Though the relative smoothness limiter aRL is still arbitrary, the
focus on relative rather than absolute thresholds allows a general effectual value to be obtained. Fig. 2 displays
the WENO-3 and WENO-4 methods’ R(IS) for the sinusoidal wave described above on grids providing six,
eight, and twelve points per wavelength. It is apparent that for six or more points per wavelength, R(IS) is
less than approximately one order of magnitude, and therefore we set aRL = 10 in Eq. (13). Any WENO meth-
od that employs the relative smoothness limiting procedure with this threshold value will be referred to as
WENO-RL.

Redefining the smoothness measurement ISk in the manner of Eq. (13) is not necessarily restricted to
information contained within the smoothness measurement itself. Though the smoothness values of the
various candidate stencils are already present within the WENO methodology and are therefore conve-
nient, the decision to forcibly apply the optimal stencil can also derive from other criteria. We consider
in particular the total variation (TV) of the flux f(u) from Eq. (1) over each candidate stencil. This var-
iation is defined as
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. (a) WENO-3. (b) WENO-4. Ratio of maximum to minimum WENO smoothness measurement ISk for a smooth sinusoidal
n on grids providing varying points per wavelength (PPW).
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TVk ¼
Xr�1

l¼1

jf ðui�rþkþlþ1Þ � f ðui�rþkþlÞj ð15Þ
With this, we can construct a total variation analog to Eq. (14), which is
RðTVÞ ¼ max0�k�rTVk

eþmin0�k�rTVk
ð16Þ
and, in turn, an analog to Eq. (13), which is
ISk ¼
0; RðTVÞ < aTV

RL

ISk; otherwise

�
ð17Þ
Note that in regions where the optimal stencil has not been forcibly imposed by this procedure, the smoothness
measurement ISk still governs WENO adaptation. Fig. 3 shows the WENO-3 and WENO-4 methods’ R(TV)
for the same sinusoidal wave as in Fig. 2, and upon observing that smooth variations may produce ratios of as
much as 5:1, we set aTV

RL ¼ 5 in Eq. (17). Any WENO method that employs the relative total variation limiting
procedure with this threshold value will be referred to as WENO-RLTV.
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(a) WENO-3. (b) WENO-4. Ratio of maximum to minimum total variation over WENO candidate stencils for a smooth sinusoidal
n on grids providing varying points per wavelength (PPW).
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As formulated in this section, the relative smoothness and total variation limiters generate sharp rather
than smooth numerical stencil transitions. Though smooth ‘‘switches’’ often yield superior performance, we
find that this is not true for the relative limiting procedures. A blended-stencil approach, which introduces
additional computational complexity, provides results that are materially identical.

4. Numerical simulations

4.1. Shu–Osher problem

The Shu–Osher problem places smooth density fluctuations upstream of a moving shock front to probe the
ability of a shock-capturing method to resolve discontinuities embedded within pseudoturbulence without
damaging fine structures. Our simulations set conditions at the right boundary to be atmospheric with zero
velocity and conditions at the left boundary such that the shock between the two states experiences a relative
incoming Mach number of three. Sinusoidal density fluctuations are imposed upstream of this shock with
wavelength k ¼ 1

8
L and excursions of ±0.2qR, in which the subscript R indicates the right boundary. Initially,

the shock is positioned at x/L = k, and we evolve simulations in time until t = 0.21L/aR. For orientation pur-
poses, Fig. 4 displays converged density profiles for the initial and terminal states as computed by the WENO-
4 scheme on an excessively fine grid of 2048 points.

Fig. 5 presents the effects of the relative smoothness and relative total variation limiters on solutions to the
Shu–Osher problem as computed by WENO-3 schemes on 192 grid points. In Fig. 5a, we plot profiles of the
normalized nonlinearity index NI 0 for the original scheme and the two modified ones alongside a sketch of the
converged density profile for reference. All indicate that neither limiter hinders adaptation where required:
across the main shock and the multiple shocklets within the low-frequency region on the left. In between these
shocklets and within the smooth high-frequency region in the middle, where adaptation is not necessary, NI 0 is
noticeably lower for schemes with the limiters than for those without. Additionally, the total variation limiter
outperforms the smoothness limiter in this respect. Such closer conformance to the optimal stencil should
result in decreased dissipation, and this expectation is borne out in Fig. 5b, which compares each of the
coarse-grid density profiles to the converged solution. In the high-frequency region, the original WENO-3
scheme is excessively damped, but the addition of either of the limiters allows most of these peaks to reach
their proper amplitudes. An exception is the leftmost peak, the profile of which the smoothness limiter fails
to improve and the total variation limiter improves only moderately. Finally, one small strike against the total
variation limiter is that it appears to amplify a previously existing artificial excursion on the far left of the den-
sity profile.
Fig. 4. Converged density profiles of the Shu-Osher problem as computed on 2048 grid points by the WENO-4 scheme.
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Fig. 5. (a) Profiles of normalized nonlinearity index NI 0. (b) Density profiles. Shu-Osher problem as computed on 192 grid points by
WENO-3 schemes employing no limiters, the relative smoothness limiter (RL), and the relative total variation limiter (RLTV).
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Fig. 6 shifts attention to the corresponding WENO-4 schemes. As before, Fig. 6a displays NI 0 for the ori-
ginal scheme, the scheme supplemented by the smoothness limiter, and the one supplemented by the total var-
iation limiter; and we observe similar trends. Neither limiter hinders adaptation where required, across the
main shock and shocklets, and in between the shocklets and within the high-frequency region, where adapta-
tion is not necessary, NI 0 is noticeably lower for schemes with the limiters, especially the total variation limiter,
than for those without. Also like before, the density profiles of Fig. 6b confirm that the reduction in NI 0 when
limiters are employed corresponds to decreased dissipation in the high-frequency region, this time with no
exceptions. Unlike before, the total variation limiter leads to small overshoots at many of these peaks, but
it does not, on the other hand, seem to amplify the artificial excursion on the far left.

4.2. Compressible isotropic turbulence

Decaying three-dimensional isotropic turbulence is a canonical flow field that realistically represents the
small scales of many turbulent flows and, if compressible, can generate shocklets that are strong and numerous
enough to require shock-capturing methods. Its physical domain is a three-dimensional cube with periodic
boundary conditions and an edge length that encompasses a sufficient sample of large-scale turbulence
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Fig. 6. (a) Profiles of normalized nonlinearity index NI 0. (b) Density profiles. Shu-Osher problem as computed on 192 grid points by
WENO-4 schemes employing no limiters, the relative smoothness limiter (RL), and the relative total variation limiter (RLTV).
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structures; an evenly-spaced Cartesian grid discretizes this domain into N3 points. We conduct direct numer-
ical simulations (DNS) of isotropic turbulence that approximate the convective terms of the Navier–Stokes
equations with various WENO methods, the viscous terms with fourth-order-accurate finite differences, and
time advancement with a third-order-accurate low-storage Runge–Kutta scheme.

The following two nondimensional parameters are important for characterizing the state of isotropic tur-
bulence: the Reynolds number based on the Taylor microscale
Rek ¼
hqiu0rmsk
hli ð18Þ
in which u0rms is the root-mean-squared velocity (per component) and k is the Taylor microscale, and the tur-
bulent Mach number
Mt ¼
q
hai ð19Þ
in which Æaæ is the average speed of sound and q is the root-mean-squared total velocity magnitude. Note
that Rek and Mt are not constant throughout a simulation because the global strength of the turbulent fluc-
tuations steadily decays over time without external forcing, which we do not include. Of the multiple sets of
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isotropic turbulence conditions that we have examined for this study, the case of initial Rek = 50 and
Mt = 0.7 is observed to demonstrate typical results. For these conditions, we find that a converged solution
can be obtained with the original WENO-4 scheme on 1923 points and that a 963 grid is appropriate for
active testing of the two relative limiters. The initial field is a solenoidal approximation that we evolve
on 2243 grid points for the duration of the initialization transient, which we find to be roughly 1.5st, where
st is the initial state’s reference time k=u0rms. We then filter the resulting field such that N = 192 and N = 96
to begin our data runs.

Fig. 7 presents the effects of the relative smoothness and relative total variation limiters on the turbulent
kinetic energy qq2 of isotropic turbulence as computed by WENO-3 schemes. In Fig. 7a, we track the tem-
poral evolution of average TKE normalized by its value at t/st = 1.5 (when the test runs begin). The con-
verged solution indicates the rate of energy decay that is natural, and the remaining solutions, on the
coarser grid, exhibit varying degrees of additional dissipation due to their numerical methods. Both the
WENO-RL and the WENO-RLTV schemes, though they fall short of achieving grid-convergence, succeed
in reducing excess dissipation by more than 50%, and neither meaningfully outperforms the other. Informa-
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Fig. 7. (a) Temporal evolution of average TKE (normalized by its value at t/st = 1.5). (b) Nondimensional energy spectrum at t/st = 3.0.
Turbulent kinetic energy of compressible isotropic turbulence as computed on 963 grid points by WENO-3 schemes employing no limiters,
the relative smoothness limiter (RL), and the relative total variation limiter (RLTV) for initial Rek = 50 and Mt = 0.7.
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tion of a more local nature is available through the instantaneous energy spectra of Fig. 7b, which displays
nondimensional spectra for each of the schemes at t/st = 3.0. Note that the offset between the converged
solution and the others at low wavenumbers is merely an artifact of the normalization. Within the zoomed
area, both the WENO-RL and WENO-RLTV schemes remain attached to the converged spectrum through
noticeably higher wavenumbers than the original WENO scheme, and, again, neither behaves substantially
differently from the other.

The Taylor microscale k is useful as an additional aggregate characterization of the state of an isotropic
turbulence field because its dependence on the first derivative of velocity as well as velocity itself causes it
to be more sensitive than global turbulent kinetic energy to local flow variations. Thus, in Fig. 8, we plot
the temporal evolution of k under conditions identical to those of Fig. 7. The sizable gap between the con-
verged solution and the unmodified coarse-grid solution becomes significantly smaller when either of the rel-
ative limiters is employed, and here, also, neither limiter produces results that differ significantly from those of
the other.

We turn now to the corresponding WENO-4 schemes – unmodified, smoothness-limited, and total-varia-
tion-limited – and proceed through an identical style of analysis. Fig. 9a tracks the decay of average turbulent
kinetic energy, and, as before, both the WENO-RL and WENO-RLTV schemes succeed in reducing excess
dissipation to approximately the same degree. Moreover, the reduction this time is nearly sufficient to allow
these two coarse-grid schemes to be deemed grid-converged, at least by this particular measure. Recall that the
original grid-converged solution required a WENO-5 method on 1923 grid points while the current active tests
use only 963. In the instantaneous energy spectra of Fig. 9b, we observe that, also like before, both of the rel-
ative limiters marginally extend the range of wavenumbers for which the coarse-grid solution remains attached
to the converged spectrum. Now, however, the WENO-RL and WENO-RLTV schemes are no longer indis-
tinguishable from one another; the total variation limiter leads to a slightly truer slope than the smoothness
limiter. This separation is also echoed within the temporal evolution of the Taylor microscale in Fig. 10, dur-
ing which the WENO-RLTV solution approaches the converged solution quite closely and more so than the
WENO-RL solution.

As we mentioned previously, we have conducted such simulations and analyses for other isotropic turbu-
lence conditions as well, specifically for combinations of initial Rek = {35,50,75} and Mt = {0.4,0.7,1.0,1.3}.
Because the qualitative trends of these results are both self-consistent and completely exemplified by the case
already discussed, we do not explicitly include them.
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Fig. 8. Taylor microscale k of compressible isotropic turbulence as computed on 963 grid points by WENO-3 schemes employing no
limiters, the relative smoothness limiter (RL), and the relative total variation limiter (RLTV) for initial Rek = 50 and Mt = 0.7.
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Fig. 9. (a) Temporal evolution of average TKE (normalized by its value at t/st = 1.5). (b) Nondimensional energy spectrum at t/st = 3.0.
Turbulent kinetic energy of compressible isotropic turbulence as computed on 963 grid points by WENO-4 schemes employing no limiters,
the relative smoothness limiter (RL), and the relative total variation limiter (RLTV) for initial Rek = 50 and Mt = 0.7.
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4.3. Computational performance

In Table 1, we quantitatively summarize the increase in computational expense incurred and the decrease in
numerical error achieved by each of the modified WENO schemes that we have discussed in this section. For
the Shu–Osher problem, we define the aggregate error to be the root-mean-square difference between the den-
sity profile of the converged solution and the profile generated by the tested scheme. For compressible isotro-
pic turbulence, we define it to be the root-mean-square difference between the converged solution’s natural
decay of average turbulent kinetic energy and the decay produced by the tested scheme. Because the former
is of a more local nature than the latter and therefore more sensitive to the precise resolution of fine structures,
it is not surprising that the smoothness and total variation limiters are more successful, by these measures, in
isotropic turbulence. Overall, the two relative limiters add less than one-fifth to computational expense but
reduce numerical dissipation roughly one-quarter in the Shu–Osher problem and roughly three-quarters in
isotropic turbulence. The extra quantity TVk in Eq. (15) that the total variation limiter must compute across
each of the r candidate stencils is what causes its expense to be greater than the smoothness limiter’s; but since
the cost of this calculation rises more slowly with r than the cost of core WENO computations, its relative
efficiency improves with increasing r.
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Fig. 10. Taylor microscale k of compressible isotropic turbulence as computed on 963 grid points by WENO-4 schemes employing no
limiters, the relative smoothness limiter (RL), and the relative total variation limiter (RLTV) for initial Rek = 50 and Mt = 0.7.

Table 1
Quantified computational performance of the relative smoothness limiter (RL) and relative total variation limiter (RLTV) for 3- and 4-
point WENO schemes

WENO-RL WENO-RLTV

WENO-3 (%) WENO-4 (%) WENO-3 (%) WENO-4 (%)

Computational time +4 +4 +20 +10
Shu–Osher problem error �23 �21 �24 �27
Isotropic turbulence error �65 �77 �56 �82
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5. Conclusions

The adaptation mechanism of the WENO methodology is overly sensitive to moderate flow field variations
that do not require shock-capturing. To alleviate this deficiency, we have appended the standard definition of
candidate stencil smoothness such that unnecessary adaptation is largely suppressed. The resulting push
toward greater reliance on the linear optimal stencil translates, in theory and in practice, into markedly
decreased numerical dissipation from nonlinear sources and improved grid-convergence properties. Though
a previously proposed absolute smoothness limiter can also accomplish this, the appropriate threshold value
for that limiter is both scheme- and problem-dependent. In contrast, the relative smoothness and total vari-
ation limiters that we have developed are found to be broadly effective without the need for costly parameter
tuning. Based on the behavior of the original smoothness measurement along discretized smooth data, we
have determined that appropriate universal threshold values for Eqs. (13) and (17) are, respectively,
aRL = 10 and aTV

RL ¼ 5.
Performance characteristics of these WENO-RL and WENO-RLTV schemes have been presented for

direct numerical simulations of the Shu–Osher problem and compressible isotropic turbulence. In the Shu–
Osher problem, both of the relative limiters verifiably discouraged unnecessary adaptation across high-fre-
quency smooth oscillations and, as a result, significantly enhanced numerical accuracy. Though the total var-
iation limiter sometimes appeared less stable than the smoothness limiter, discrepancies were minor and did
not grow with time. In isotropic turbulence, the two limiters successfully reduced the excess decay of turbulent
kinetic energy that stems from numerical dissipation, and in the case of the WENO-4 scheme, they did so to
the point of allowing grid-convergence to be attained with 963 grid points instead of 1923. Additionally, the
energy spectrum and Taylor microscale evolution of the WENO-4 case indicated a slight superiority of the
total variation limiter over the smoothness limiter (although this advantage shrinks when the former’s addi-
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tional computational expense is considered). Overall, the gains in numerical accuracy made possible by each of
the relative limiters justify their computational costs.

Therefore we support and encourage the adoption of either the relative smoothness limiter or the relative
total variation limiter into the linearly bandwidth-optimized WENO methodology as a means of mitigating
nonlinear numerical dissipation. We particularly favor 4-point WENO schemes that have been so modified.
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