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Weighted essentially non-oscillatory (WENO) methods can simultaneously
provide the high order of accuracy, high bandwidth-resolving efficiency, and
shock-capturing capability required for the detailed simulation of compressible
turbulence. However, rigorous analysis of the actual versus theoretical error
properties of these non-linear numerical methods is difficult. We use a band-
width-optimized WENO scheme to conduct direct numerical simulations of
two- and three-dimensional decaying isotropic turbulence, and we evaluate the
performance of quantitative indicators of local WENO adaptation behavior
within the resulting flow fields. One aspect of this assessment is the demarca-
tion of shock-containing and smooth regions where the WENO method should,
respectively, engage its adaptation mechanism and revert to its linear optimal
stencil. Our results show that these indicators, when synthesized properly, can
provide valuable quantitative information suitable for statistical characterization.

KEY WORDS: Shock capturing: adaptive numerical method; WENO; DNS;
compressible turbulence; isotropic turbulence.

1. INTRODUCTION

The detailed simulation of turbulent fluid flow requires numerical meth-
ods that avoid excessive damping of spatial features over a large range
of length scales, including those as small as the grid spacing. Such meth-
ods demand high order of accuracy and high bandwidth-resolving effi-
ciency. Compressibility, however, imposes a competing constraint due to
the possible presence of shocks and shocklets (small transient shocks). The
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application of uniformly high-order numerical methods across shock-con-
taining regions causes spurious oscillations, which are often indistinguish-
able from turbulent fluctuations and may lead to numerical instabilities
and inaccuracies. Weighted essentially non-oscillatory (WENO) schemes
offer an alternative approach that combines high order of accuracy
and bandwidth-resolving efficiency with shock-capturing for the unsteady
shockwaves in compressible turbulence.

WENO schemes [6] compute numerical fluxes at a point in space via
several different candidate stencils and form a final flux approximation by
summing weighted contributions from each stencil. Smoothness measure-
ments cause stencils that span large flow field gradients to be assigned
small relative weights so that a nearly discontinuous shock would provide
a weight of almost zero to any stencil containing it. In smooth regions, the
relative values of the weights are designed to be optimal by some gauge
such as maximum order of accuracy or maximum bandwidth.

Jiang and Shu [3] cast the WENO methodology into finite-difference
form and provide an efficient implementation of a robust and high-order-
accurate WENO scheme. Unfortunately, this scheme often generates exces-
sive numerical dissipation for detailed simulations of turbulence, especially
for large-eddy simulations (LES) [2]. WENO dissipation arises from two
distinct sources: (i) the optimal stencil, which on its own describes a linear
scheme, and (ii) the adaptation mechanism, which drives the final numeri-
cal stencil away from the optimal one. Bandwidth optimization can reduce
the dissipation of the optimal stencil [9,8]; and Martin et al. [8] dem-
onstrate that such a bandwidth-optimized WENO method, WENO-SYM-
BO, indeed reduces numerical dissipation and provides accurate results for
direct numerical simulations (DNS) of isotropic turbulence and turbulent
boundary layers.

Although the WENO-SYMBO scheme successfully reduces numerical
dissipation due to the optimal stencil, the adaptation mechanism still leads
to significant dissipation. Decreasing the grid spacing can compensate for
this; however, in certain cases, increasing the number of grid points is
not feasible. According to Martin [7], LES of turbulent boundary lay-
ers with WENO-SYMBO fail because of insufficient distinction between
shock-containing and smooth regions on typical LES grids. Additionally,
Wu et al. [10] encounter local disparities between DNS and experiments
of shock/turbulent boundary layer interactions and find that the numerical
dissipation of the WENO-SYMBO method, even at the highest possible
resolutions, is responsible for the disagreement. Decreasing the dissipa-
tion inherent in the WENO adaptation mechanism is challenging because
potential deficiencies relevant primarily to the damping of turbulent fea-
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tures may become apparent only in realistic simulations and must then be
examined locally.

The purpose of this paper is to provide and assess general techniques
for probing the local behavior of the WENO stencil adaptation mecha-
nism in turbulent flow fields. Specifically, we investigate and quantitatively
summarize characteristics of the final combined stencils produced by the
WENO method in realistic simulations. This ability can aid future endeav-
ors to improve the WENO methodology. We conduct direct numerical sim-
ulations of isotropic turbulence and focus on comparing shock-containing
and smooth flow regions, where WENO adaptation should, respectively,
engage and remain disengaged. In the first half of the paper, we pres-
ent the governing equations, background on the WENO-SYMBO method,
and details of the numerical simulations. Next, we explain our approaches
for isolating shocklets and distilling relevant WENO adaptation informa-
tion. Finally, we discuss the results and formulate the conclusions from
this work.

2. GOVERNING EQUATIONS

The motion of a compressible fluid is governed by the Navier–Stokes
equations describing conservation of mass, momentum, and energy,

∂ρ

∂t
+ ∂

∂xk

(ρuk)=0, (2.1)

∂

∂t
(ρui)+ ∂

∂xk

(ρuiuk +pδik −σik)=0, (2.2)

∂

∂t
(ρe)+ ∂

∂xk

[(ρe+p)uk −σklul +qk]=0 (2.3)

in which ρ is density, ui is velocity in the i direction, and p is pressure.
The shear stress tensor σij is assumed to obey a linear stress-strain rela-
tionship,

σij =µ

[(
∂ui

∂xj

+ ∂uj

∂xi

)
− 2

3
∂uk

∂xk

δij

]
(2.4)

in which viscosity µ depends only on temperature T through a power law,

µ=µ0

(
T

T0

)n

. (2.5)
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Our working fluid is air, which we treat as a perfect gas with gas
constant R and constant specific heat capacity (at constant volume) cv.
Total energy per unit mass e is given by

e= cvT + 1
2ukuk. (2.6)

The heat flux in the i direction qi arises from conduction through
Fourier’s law,

qi =−κ
∂T

∂xi

(2.7)

in which thermal conductivity κ is directly related to µ as

κ =
(

5
2cv − 3

2R
)

µ. (2.8)

3. BANDWIDTH-OPTIMIZED WENO METHOD

We summarize the bandwidth-optimized WENO method [9,8] in the
context of the scalar, one-dimensional advection equation,

∂u

∂t
+ ∂

∂x
f (u)=0. (3.1)

This model equation represents the decoupled forms of Eqs. (2.1)–(2.3) of
Sec. 2 after a transformation from physical into characteristic space. If the
spatial domain is discretized such that xi = i∆, in which ∆ is the grid spac-
ing, and ui =u (xi), Eq. (3.1) may be cast into the semidiscretized form

dui

dt
=− 1

∆

(
f̂

i+ 1
2
− f̂

i− 1
2

)
(3.2)

in which f̂i+1/2 is a numerical approximation of f
(
u(xi+1/2)

)
. Once the

right-hand side of this expression has been evaluated, numerical tech-
niques for solving ordinary differential equations, such as Runge–Kutta
methods, may be employed to advance the solution in time. In order to
ensure stability, procedures that approximate f (u) generally split it into
f + (u), which has a strictly non-negative derivative, and f − (u), which has
a strictly non-positive one.

The WENO schemes compute f̂ +
i+1/2 through interpolating polynomi-

als on a number of candidate stencils each containing r grid points. In the
modified WENO method, there are in total (r +1) stencils. The one fully
upwinded stencil ranges from (i − r +1) to i, the one fully downwinded
stencil ranges from (i +1) to (i + r), and the other stencils fall in between
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these two extremes. Figure 1 provides a schematic of this arrangement.
Note that, unlike the stencils of Jiang and Shu [3], the present collection
is symmetric about the point

(
i + 1

2

)
. If the flux approximation on stencil

k is designated qk and the weight assigned to that stencil is ωk, the final
numerical approximation becomes

f̂ +
i+ 1

2
=

r∑
k=0

ωkqk (3.3)

ωk are normalized forms of weights αk defined as

αk = Ck

(ε + ISk)
p (3.4)

in which ε prevents division by zero, ISk is a smoothness measurement
that becomes large when discontinuities are present within stencil k, and
p may be varied to increase or decrease WENO adaptation sensitivity. In
completely smooth regions, each stencil is equally desirable, and ωk revert
to the optimal weights Ck.

The corresponding stencil diagram for f̂ −
i+1/2 is simply a mirror image

of Fig. 1. Because the total number of data points available to the modi-
fied WENO algorithm is 2r, its maximum order of accuracy is also 2r; but
the bandwidth-optimization procedure [9,8] reduces its guaranteed order
of accuracy to r. Thus nth-order accuracy implies r = n and vice versa.
The bandwidth-optimization process also introduces a small amount of
artificial dissipation to an otherwise neutrally stable optimal stencil to
enhance its stability. In practice, the weight of the fully downwinded sten-
cil ωr is artificially constrained to be no greater than the least of the
others so that other independent adverse stability effects are avoided.

S1

S0

S3

S2

i−2 i−1 i i+3i+1 i+2

Fig. 1. Candidate stencils for the numerical flux f̂ +
i+1/2 when r = 3 for the bandwidth-

optimized WENO method [9,8].
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4. INDICES OF STENCIL ADAPTATION

The continuity of the WENO weighting process allows the per-
formance characteristics of the final numerical stencil to fall anywhere
between those of the least favorable candidate stencil and those of the
optimal stencil, which is most favorable. In order to gauge this variation
quantitatively but efficiently in a full flow field, Weirs [9] proposed two
measures known as the centrality and non-linearity indices. Both compare
the weights αk to the optimal weights Ck and can be incorporated into an
existing WENO code with little effort or performance penalty.

The centrality index CI is a measure of stencil symmetry.

CI=
[

r∑
k=0

k (αk/Ck)∑r
k=0 (αk/Ck)

]
− r

2
. (4.1)

A value of zero indicates that the final numerical stencil is perfectly
symmetric although it may still deviate substantially from the optimal
stencil. If CI is negative, upwinding occurs along with associated
dissipation, so dissipation increases with negative departure from CI=0.
Similarly, positive values suggest downwinding to some extent. As we
previously noted, preferential selection of the stencil lying entirely down-
wind is prohibited, but no other constraints exist to force the final stencil
center to be upwind. For the bandwidth-optimized WENO scheme with
r =3, the possible range of CI is [−1.5 : 1.5].

The non-linearity index NI is a measure of the degree of departure
from the optimal stencil, which, without adaptation, would lead to a lin-
ear numerical method.

NI=
(

r∑
k=0

[
1− (r +1) (αk/Ck)∑r

k=0 (αk/Ck)

]2
)1/2

. (4.2)

This definition forces NI to always be non-negative, and only the opti-
mal stencil can provide a value of zero. NI reaches its theoretical max-
imum when any one candidate stencil is chosen exclusively to form the
final numerical stencil. Ideally, in smooth regions where WENO adapta-
tion is unnecessary, NI should remain much less than this maximum so
that the favorable performance capabilities of the optimal stencil are real-
ized. Quantifying the upper limit of these acceptable values is a subject of
ongoing research beyond the scope of this paper. The possible range of NI
for r =3 is approximately [0 : 3.5].
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5. DIRECT NUMERICAL SIMULATIONS

Decaying isotropic turbulence is a canonical flow field that realistically
represents the small scales of many turbulent flows. Because the WENO
adaptation mechanism relies on local flow information only, studies of
adaptation behavior in isotropic turbulence should therefore apply to other
turbulent configurations as well. We first concentrate on two-dimensional
rather than three-dimensional DNS due to more straightforward visualiza-
tion and faster simulation turn-around. The density contours of Fig. 2 are
typical of these simulations and illustrate the presence of shocklets where
gradients are steep. Then, we consider three-dimensional turbulence, which
is arguably the only truly physically meaningful form.

The physical domain for isotropic turbulence is either a two-dimensional
square or three-dimensional cube with periodic boundary conditions and
an edge length such that the large-scale turbulence statistics are sufficiently
uncorrelated between the center and edges. An evenly-spaced Cartesian
grid discretizes this domain into, respectively, N2 or N3 points. The
following four parameters govern the generation of an initial field: the
average density 〈ρ〉 and temperature 〈T 〉; the turbulent Mach number

Fig. 2. Density contours produced by a typical direct numerical simulation of two-
dimensional isotropic turbulence.
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Mt = q

〈a〉 (5.1)

in which 〈a〉 is the average speed of sound and q is the root-mean-squared
velocity summed over all directions; and the Reynolds number based on
the Taylor microscale

Reλ = 〈ρ〉u′
rmsλ

〈µ〉 (5.2)

in which u′
rms is the root-mean-squared velocity and λ is the Taylor micro-

scale. Note that these parameters do not remain constant throughout a
simulation. For both two and three dimensions, the global strength of tur-
bulent fluctuations decays over time without external forcing, which we
have not included.

Initialization of isotropic turbulence begins with uniform density and
temperature across the domain and completely random velocity values in
the range [−0.5 : 0.5]. The physical velocity field is then transformed into
Fourier space where its compressible part is removed and the remainder is
manipulated to provide the kinetic energy distribution

E (k)=Ak4e−2(k/k0)
2

(5.3)

in which k is non-dimensional wavenumber magnitude, k0 is the wave-
number at which the energy spectrum peaks, and A is a constant of pro-
portionality that depends on q and k0. This is an approximation of the
observed distribution in isotropic turbulence, and a numerical simulation
starting from Eq. (5.3) must be allowed sufficient time to develop a fuller
spectrum. Blaisdell and Ristorcelli [1] have presented methods by which to
add consistent dilatation and density and pressure fluctuations to the flow
field, but these rely on perturbation techniques that are strictly valid only
for small Mt . Because this is not true of the conditions we consider, our
initial fields are solendoidal.

Table I lists the governing parameters for the simulations that we per-
form. In each case, 〈ρ〉= 1 kg/m3, 〈T 〉= 300 K, and k0 = 4. We evolve the
initial fields via DNS with a third-order Runge–Kutta time integration
technique. The convective numerical fluxes are computed using a third-
order, bandwidth-optimized WENO scheme [9,8], and the viscous fluxes,
which are diffusive in nature, are computed using a fourth-order central
standard (order-optimized) scheme. We deem a field to have reached a
proper state of isotropic turbulence when the skewness of the velocity
derivatives becomes relatively steady. If we define a reference time
τt =λ/u′

rms, we find that our two-dimensional simulations can be meaningfully
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Table I. Initial Turbulent Mach Number Mt and Reynolds
Number Based on the Taylor Microscale Reλ for each Simu-
lation Run. Two-dimensional Simulations are on the Left and
Three-dimensional on the Right

Case Mt Reλ Case Mt Reλ

2D1 0.4 50 3D0 0.1 20
2D2 0.6 50 3D1 0.4 35
2D3 0.8 50 3D2 0.5 35
2D4 1.0 50 3D3 0.6 35
2D5 1.2 50 3D4 0.7 35
2D6 1.4 50 3D5 0.8 35
2D7 1.6 50 3D6 0.9 35
2D8 1.8 50 3D7 1.0 35
2D9 2.0 50 3D8 1.1 35

interrogated for t/τt �2.0 and our three-dimensional simulations for t/τt �
1.5.

We include the validation case 3D0, for which Mt is low, in order
to compare the performance of the WENO method to that of a well-
established sixth-order Padé scheme [5,4]. Figure 3(a) demonstrates that
for N = 128 the two techniques generate an identical temporal evolution
of turbulent kinetic energy. However, although the Padé scheme produces
grid-converged results for N =64, the WENO method requires N =128. In
Fig. 3(b), the instantaneous energy spectra of the two methods also agree
well when N =128, but for N =64 the WENO scheme leads to pronounced
aliasing errors at high wavenumbers. We find that for all three-dimensional
flow conditions in Table I, N = 128 is sufficient to obtain grid-converged
turbulence statistics, and for all two-dimensional conditions, N = 256 is
sufficient.

6. SHOCK DETECTION

The purpose of WENO methods is to provide an adequate reduc-
tion of order of accuracy across the near-discontinuities caused by shocks
and shocklets while retaining favorable order-of-accuracy and bandwidth
properties elsewhere. We have already confirmed such behavior in canon-
ical test cases [8]. In isotropic turbulence, however, we cannot so eas-
ily distinguish shocklets from smooth regions. In order to examine the
local WENO adaptation mechanism in realistic flow fields, we require an
automated means of determining which grid points lie within shocklets
and which do not.
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Fig. 3. Comparison of a WENO and a Padé scheme for initial Mt = 0.1. (a) Temporal
evolution of the average turbulent kinetic energy q2 (normalized by its initial value).
(b) Instantaneous kinetic energy spectra (normalized by the total kinetic energy) at time
t/τt =1.5.

Our procedure focuses on the construction of instantaneous stream-
lines. Although the path of a fluid particle eventually diverges from a
streamline with the same starting location, the two are sufficiently close
during the typical amount of time that the particle is influenced by a
shocklet. We first narrow the field of shock candidates by considering
only those grid points at which the magnitude of the pressure gradient is
greater than an adjustable threshold value. In theory, this gradient should
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be nearly infinite for length scales greater than a few mean free paths, but
in practice numerical simulations cause a shock to become smeared due to
the necessary reduction in order of accuracy. The gradient test is less com-
putationally expensive than the full streamline construction and reduces
the number of potential false positives.

A grid point that has passed the gradient test becomes the anchor for
both a forward and a backward streamline. To advance forward, our algo-
rithm moves a small distance, typically a fraction of the grid spacing, in
the direction of the local velocity vector. Each flow variable is then com-
puted at the new endpoint via bi- or tri-linear interpolation. In a regular
two-dimensional grid, every possible location lies within a grid rectangle,
the four corners of which contain known variable values. Since only three
points are necessary for linear interpolation, the fourth may be employed
to reduce error. Similarly, the eight corners of a cube are more than the
four points required for linear interpolation in three dimensions, so, again,
error reduction is feasible. Thus the error due to this portion of our shock-
detection algorithm is better than linear. In this way a forward streamline
emerges incrementally, and receding from the anchor point in the opposite
direction of the local velocity vector produces a backward streamline.

Once the streamline is complete, the algorithm searches for the first
local maximum of pressure downstream and the first local minimum
upstream. The density and pressure ratios between these two points are
then tested against the Rankine–Hugoniot jump conditions that hold
across a shock. If a subscript R denotes a ratio of like quantities, this con-
dition is

ρR − (γ +1)pR + (γ −1)

(γ −1)pR + (γ +1)
=0 (6.1)

in which γ is the specific heat capacity ratio. A deviation smaller than an
adjustable threshold value (in our present study 0.5–1.0%) indicates that
the anchor point lies within a shocklet. If this is true, the anchor point
is flagged and the downstream and upstream points are treated as the
numerical boundaries of the shocklet. Note that Eq. (6.1) is also satis-
fied when both the density and pressure ratios are unity (the trivial case).
We have already guarded against this possibility by applying the gradient
test described above, and, as added insurance, the algorithm rejects any
“shocks” with a numerical width of less than two grid spacings, which is
a theoretical minimum.

Figure 4 shows density and pressure profiles along an instantaneous
streamline through one of the grid points that our search algorithm
flagged as a shocklet in Case 2D4. The distance along the streamline L,
relative to the point of interest, is normalized by the grid spacing ∆, which
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Fig. 4. Density and pressure profiles along an instantaneous streamline through one of the
grid points of Case 2D4 (N =512) flagged as a shocklet. Flow is from left to right, and sym-
bols mark the computed numerical boundaries of the shock.

is the same in all Cartesian directions. The computed forward and back-
ward edges of the shock are marked by symbols. We provide a similar plot
in Fig. 5 for Case 3D4. If we define shock strength as the incoming nor-
mal Mach number in a frame of reference where the shock is stationary,
the shocklets in these two examples have strengths of 1.5 and 1.4, respec-
tively. Strengths in our two-dimensional simulations are typically less than
2.0 and in three dimensions less than 1.5.

Because our procedure for detecting shocklets errs on the side of cau-
tion, some discarded points may, in fact, constitute especially weak or
numerically smeared shocks. However, since the number of points near
or within shocklets is quite small compared to the total number of grid
points, global statistics concerning the smooth regions are nearly equiv-
alent to global statistics involving the entire domain. Thus, we will later
refer to adaptation behavior regarding “shocklets” versus the “aggregate”
flow, which substitutes for smooth regions alone.

7. DISTILLING ADAPTATION INFORMATION

The centrality and non-linearity indices of Sec. 4 are not quite yet
able to encapsulate local WENO stencil adaptation behavior within two
simple numbers. This is because Eq. (3.1), a model equation, arises in
varying forms multiple times during the simulation of the full Navier–
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Fig. 5. Density and pressure profiles along an instantaneous streamline through one of the
grid points of Case 3D4 (N =128) flagged as a shocklet. Flow is from left to right, and sym-
bols mark the computed numerical boundaries of the shock.

Stokes Eqs. (2.1)–(2.3). Each conserved variable, such as mass, has an
associated governing equation in characteristic space, and each of these
in turn contains expressions applying to each cardinal direction separately
(in the context of convection). Since our three-dimensional simulations, for
example, cover three directions and five characteristic variables, we would
face up to fifteen different values apiece for CI and NI. We must distill
this information further.

To eliminate directional distinctions, we simulate for each variable
an equivalent single CI and NI as if the local flow velocity was exactly
aligned with one of the cardinal directions. That is, the indices associated
with each direction are weighted by the components of the velocity vector
and combined, and the combination is then re-normalized. The resulting
values quantify the nature of stencil adaptation that a virtual fluid particle
momentarily “feels” rather than just “sees” as it travels through a point in
space.

We have computed these modified non-linearity indices, now stripped
of their directional information, for each of the five characteristic variables
at every grid point of Cases 2D5 (N = 256) and 3D6 (N = 64). Table II
lists the linear least-squares correlation coefficients for the two NI values
associated with all possible pairs of variables, and none of the pairs is
strongly correlated or even substantially more correlated than any other.
In other words, the degree of stencil adaptation that the WENO method
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Table II. Linear Least-Squares Correlation Coefficients Rmn

for the Non-linearity Indices Associated with all Possible
Pairs of Characteristic Variables

Case

2D5 3D6

R12 0.57 0.36
R13 0.57 0.35
R14 N/A 0.36
R15 0.58 0.32
R23 0.56 0.32
R24 N/A 0.32
R25 0.55 0.28
R34 N/A 0.32
R35 0.56 0.28
R45 N/A 0.27

has deemed suitable for one variable is only loosely related over the entire
flow field to the degree deemed suitable for another. Because we can dis-
cern no basis by which to favor certain variables over others, we choose to
form our final CI and NI by simply averaging all five of their intermediate
values.

These two simplifications allow each point in a flow field to have
exactly one associated CI and one NI. Shocks, however, span multiple
grid points due to numerical smearing, so one further distillation step is
necessary when considering shocklets. Figures 6 and 7 again show the
streamlines of Figs. 4 and 5 but this time with profiles of NI included.
NI achieves a distinct maximum immediately upwind of the center of each
identified shocklet and thereby indicates that the WENO adaptation mech-
anism is engaging strongly as it senses the presence of a near-discontinuity
ahead. Since this behavior is consistent with the intent of WENO meth-
ods in general, we designate both CI and NI at the spatial location of that
maximum as the representative values for the shocklet.

8. TWO-DIMENSIONAL RESULTS

Our two-dimensional simulations provide statistically reliable shock
data for Cases 2D3 and onward, which correspond to initial Mt =0.8 (final
Mt � 0.64) and greater. As we explained in Sec. 6, we may freely desig-
nate two threshold values during the search for shocklets. We choose to
restrict our attention to shocks that obey the jump condition of Eq. (6.1)
to within 1.0% and then adjust the gradient threshold to such a value that
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Fig. 6. Instantaneous streamline of Fig. 4 with the addition of the non-linearity index
profile. The symbol marks the value of NI associated with this shocklet.
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Fig. 7. Instantaneous streamline of Fig. 5 with the addition of the non-linearity index
profile. The symbol marks the value of NI associated with this shocklet.

the total number of flagged shocklets is roughly equal for each simulation
run. This helps to mitigate selection bias when comparing shock-related
statistics between cases.

Figure 8 displays the probability densities of the non-linearity index
for Case 2D4 over the aggregate flow field and also restricted to the sets
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Fig. 8. Probability density of the non-linearity index for Case 2D4.

of identified shocklets. We observe that the aggregate distributions peak at
significantly larger values of NI with decreasing resolution while the shoc-
klet distributions remain nearly identical. In fact, when N =128, the aggre-
gate distribution begins to substantially overlap the shocklet distribution.

We find similar qualitative results for the remainder of the simu-
lation cases, so we do not include the corresponding figures. Instead,
Table III summarizes the quantitative variations by listing the mean
values of instantaneous turbulent Mach number Mt, shock strength M⊥,
non-linearity index associated with shocklets NIS, and non-linearity index
concerning the aggregate flow NIA. Note that Mt is approximately equal
for all resolutions of a given case so that overall fluctuation strength has
a negligible impact on differences due only to resolution. Unsurprisingly,
average shock strength (as captured by the WENO method) increases
slightly as Mt rises, but it also increases as resolution becomes more fine.
Despite the escalation of shock strength, NIS decreases under the same
transformations. However, the drop in NIA as resolution increases is far
more dramatic, and, unlike NIS, NIA rises with increasing Mt.

In Fig. 9, we present a plot analogous to that of Fig. 8 but regard-
ing the centrality index. Note the x-axis values; they are all positive, and
this is no mistake. Apparently, the adaptation mechanism of the third-
order WENO scheme that we employ strongly favors downwind-centered
stencils when it engages. In contrast, Fig. 10 shows that a fourth-order
bandwidth-optimized WENO scheme [9,8] leads to overwhelmingly neg-
ative values of CI and hence upwind-centered stencils. With neither of
the two schemes do the shocklet distributions of CI at various resolutions
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Table III. Mean Values of Instantaneous Turbulent Mach
Number Mt, Shock Strength M⊥, Non-linearity Index Con-
cerning the Aggregate Flow NIA, and Non-linearity Index
Associated with Shocklets NIS for Varying Resolutions N of
Select Two-dimensional Cases

N Case Mt M⊥ NIS NIA

128 2D3 0.32 1.22 1.66 1.11
2D4 0.73 1.24 1.59 1.15
2D5 0.83 1.23 1.57 1.18
2D6 0.93 1.27 1.56 1.20
2D7 1.00 1.28 1.52 1.20

256 2D3 0.64 1.28 1.72 0.74
2D4 0.72 1.29 1.59 0.77
2D5 0.84 1.35 1.64 0.79
2D6 0.94 1.29 1.44 0.83
2D7 1.06 1.35 1.45 0.83

512 2D3 0.66 1.35 1.49 0.44
2D4 0.75 1.40 1.48 0.50
2D5 0.87 1.53 1.54 0.49
2D6 0.95 1.37 1.18 0.50
2D7 1.02 1.46 1.33 0.54

match one another like those of NI in Fig. 8. The peaks of both the shoc-
klet and aggregate distributions shift leftward to lesser values of CI as res-
olution decreases. However, the overlap among the various distributions is
significant, especially for the third-order scheme; so these resolution trends
for CI are not robust.

9. THREE-DIMENSIONAL RESULTS

Our three-dimensional simulations produce results that are qualita-
tively identical to those of the previous section. Thus we emphasize the
few differences and reiterate only some of the more general agreements.
In three dimensions, statistically reliable shock data emerge for Cases 3D3
and onward, which correspond to initial Mt = 0.6 (final Mt � 0.44) and
greater. The jump condition threshold for Eq. (6.1) is now 0.5%, and, as
before, we adjust the gradient threshold so that roughly equal numbers of
shocklets are identified for each simulation case.

Figure 11 is the three-dimensional analog to Fig. 8 and shows prob-
ability densities of the non-linearity index for Case 3D4. Again, the
aggregate distributions peak at significantly larger values of NI as reso-
lution decreases while the shocklet distributions remain nearly identical.
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Fig. 9. Probability density of the centrality index for Case 2D4 with a third-order-accurate
bandwidth-optimized WENO method.
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Fig. 10. Probability density of the centrality index for Case 2D4 with a fourth-order-
accurate bandwidth-optimized WENO method.

For other cases, Table IV presents, like Table III, the mean values of
instantaneous turbulent Mach number Mt, shock strength M⊥, non-lin-
earity index associated with shocklets NIS, and non-linearity index con-
cerning the aggregate flow NIA. The only notable difference between the
trends of the two tables is that NIS rises with increasing Mt for the range



Stencil Adaptation Properties of a WENO Scheme 551

NI

℘
(N

I)

0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

1282: Aggregate
1282: Shocklets
2562: Aggregate
2562: Shocklets

Fig. 11. Probability density of the non-linearity index for Case 3D4.

Table IV. Mean Values of Instantaneous Turbulent Mach
Number Mt, Shock Strength M⊥, Non-linearity Index Con-
cerning the Aggregate Flow NIA, and Non-linearity Index
Associated with Shocklets NIS for Varying Resolutions N of
Select Three-dimensional Cases

N Case Mt M⊥ NIS NIA

64 3D3 0.43 1.13 1.56 1.39
3D4 0.49 1.17 1.60 1.40
3D5 0.55 1.22 1.64 1.40
3D6 0.61 1.23 1.68 1.40
3D7 0.65 1.29 1.70 1.41

128 3D3 0.45 1.21 1.50 1.00
3D4 0.51 1.29 1.57 1.02
3D5 0.58 1.36 1.65 1.02
3D6 0.62 1.39 1.65 1.04
3D7 0.68 1.40 1.61 1.05

of Mt available in the three-dimensional simulations. All other prior obser-
vations are unchanged.

The probability densities of the centrality index in three dimensions
are displayed in Fig. 12 for the third-order WENO scheme and Fig. 13
for the fourth-order method. As before, the third-order scheme leads
entirely to downwind-centered final numerical stencils while the fourth-
order scheme leads to upwind-centered stencils. Also, the peaks of both
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Fig. 12. Probability density of the centrality index for Case 3D4 with a third-order-accurate
bandwidth-optimized WENO method.
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Fig. 13. Probability density of the centrality index for Case 3D4 with a fourth-order-
accurate bandwidth-optimized WENO method.

the aggregate and shocklet distributions shift to lesser values of CI with
decreasing resolution. Again, however, significant overlap among the dis-
tributions, especially for the third-order method, calls the reliability of
these resolution effects into question.
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10. CONCLUSIONS

The two- and three-dimensional results produce a number of con-
sistent trends. The mean non-linearity index of the aggregate field NIA
increases with increasing Mt. This leads to the sensible interpretation that
stronger turbulent fluctuations induce greater degrees of WENO adapta-
tion. As resolution becomes coarser, calculated shock strengths decrease,
NIA increases sharply, and the mean non-linearity index of identified shoc-
klets NIS rises slightly but much less significantly than NIA. The first
effect reflects the enhanced ability of a finer grid to faithfully capture
near-discontinuities. Additionally, the aggregate probability distribution of
NI at the lowest simulated resolution substantially overlaps the shocklet
distributions at all resolutions. These resolution trends collectively indi-
cate that on coarser grids the WENO adaptation mechanism misidenti-
fies normal variations as discontinuities and engages the vigorous adapta-
tion intended for shocks. Although over-adaptation deficiencies of WENO
methods on coarse grids have previously been inferred in simulations of
turbulent boundary layers [7], the present data demonstrate such behavior
quantitatively.

Reduction of resolution also causes both the aggregate and shocklet
probability distributions of the centrality index to peak at lesser values.
This holds for the third-order WENO scheme, which produces overwhelm-
ingly positive CI values, as well as for the fourth-order scheme, which
leads to predominantly negative values. Recall that positive CI indicates
that the final non-linear numerical stencil is centered downwind of the
point of interest and negative CI indicates that the final stencil is centered
upwind. Because the focus of this study is to evaluate CI and NI against
known or hypothesized numerical behaviors and not to discover new ones,
the possible relevance of downwind- versus upwind-centered stencils to
the error characteristics of the WENO adaptation mechanism is a subject
for future investigations. Nonetheless, the apparent dominance of down-
winding in the third-order WENO scheme is troubling. It suggests that
this scheme cannot be fully stable, and perhaps the strength of the inher-
ent WENO dissipation is the only reason that instabilities do not appear
among computed results.

We therefore conclude that the non-linearity and centrality indices
are functional tools not only in theory but also in practice through sta-
tistical characterization. Although NI often provides the most readily
interpretable information about WENO stencil adaptation, we cannot
afford to discount the contributions of CI. For example, an analysis of NI
alone would suggest that the adaptation mechanism treats shocklets nearly
equally regardless of resolution. However, the corresponding analysis of CI
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demonstrates that, despite similar overall degrees of preferential selection,
the particular candidate stencils that the mechanism favors (e.g., upwind-
or downwind-centered) do vary significantly.

In this paper, we have presented two theoretical indicators of WENO
adaptation behavior, a means to procure equivalent values from a realis-
tic three-dimensional fluid simulation, and a general approach to separat-
ing information specifically related to shocklets from the aggregate flow.
We have conducted this analysis in decaying isotropic turbulence, and the
canonical nature of such turbulence implies that more complex turbulent
flows should produce qualitatively similar results.
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