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Abstract

Two new formulations of a symmetric WENO method for the direct numerical simulation of compressible turbulence
are presented. The schemes are designed to maximize order of accuracy and bandwidth, while minimizing dissipation. The
formulations and the corresponding coefficients are introduced. Numerical solutions to canonical flow problems are used
to determine the dissipation and bandwidth properties of the numerical schemes. In addition, the suitability and accuracy
of the bandwidth-optimized schemes for direct numerical simulations of turbulent flows is assessed in decaying isotropic
turbulence and supersonic turbulent boundary layers.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The detailed simulation of compressible turbulent flows requires solving the conservation of mass, momen-
tum and energy equations. For direct numerical simulations (DNS) all possible turbulent length scales and
time scales must be resolved by the numerical method. Thus, DNS requires accurate representation of
time-dependent propagation of high wavenumber (or high frequency), small amplitude waves. In addition,
compressible turbulent flows are characterized by shockwaves that result in a sudden change of the fluid prop-
erties. Therefore, methods for compressible turbulent flows require robust shock capturing, as well as minimal
dissipation and dispersion errors.

Resolving the shock thickness is impractical for the detailed simulation of turbulence, as the mean free path
is typically orders of magnitude smaller than that of the Kolmogorov length scale [1,2]. In the present simu-
lations, we resolve all turbulent length scales and time scales, while shocks are not being resolved. In turn, the
simulations within are ‘‘effective’’ direct numerical simulations.
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Fig. 1 shows a numerical schlieren image from a DNS of a shock and turbulent boundary layer interaction
at Mach 3 and Reynolds number based on momentum thickness Reh = 2400 [3,4]. In this flow, a turbulent
boundary layer is convected over a 24� compression ramp, which generates a shockwave. The turbulent struc-
tures in the incoming boundary layer are apparent. The unsteady nature of the boundary layer causes the
shock to wrinkle and oscillate near the corner. Downstream of the corner, the boundary layer remains com-
pressed between the wall and the compression-corner shock, and additional shocks emanate from the large
structures in the wake of the boundary layer and merge with the compression-corner shock while convecting
downstream. Computing all the relevant turbulence structures in this flow requires high order of accuracy and
bandwidth-resolving efficiency, as well as shock capturing for the unsteady shockwaves. Weighted essentially
non-oscillatory (WENO) schemes provide a means for the DNS of compressible turbulent flow.

In WENO schemes [5], the numerical flux is computed as the weighted sum of a set of candidate flux
approximations. The weights depend dynamically on the local smoothness of the data. Smoothness measure-
ments cause stencils that span large flow field gradients to be assigned small relative weights; any candidate
stencil containing a shock receives a nearly zero weight. In completely smooth regions, weights revert to opti-
mal values, where optimal is defined by, e.g. maximum order of accuracy or maximum bandwidth. This
weighting procedure makes the WENO schemes more robust than their predecessors, the essentially non-oscil-
latory (ENO) schemes (see for example [6,7]), which use the single smoothest candidate stencil to the exclusion
of the others.

Jiang and Shu [8] cast WENO into finite-difference form and provide an efficient numerical implementation
of the shock-capturing technique so that conditional statements are avoided. This scheme, which is referred as
WENO-JS hereafter, provides robust shock-capturing, high-order accuracy and efficient implementation on
distributed memory, multiprocessor machines. However, WENO-JS is too dissipative for the detailed simula-
tion of turbulent flow.

There have been a number of efforts to overcome the deficiencies of conventional shock-capturing schemes
for the detailed simulation of compressible turbulence. Adams and Shariff [9] developed a hybrid scheme that
couples compact upwind and shock-capturing ENO schemes, in which the ENO scheme is activated only
around discontinuities. Pirozzoli [10] follows a similar approach and replaces the non-conservative formula-
tion of the compact scheme with a conservative one and the ENO with WENO, resulting in a more stable and
accurate algorithm. Ren et al. [11] improve the hybrid compact-WENO scheme [10] by removing the abrupt
switch between the compact and the shock-capturing schemes through the use of a weighted average of the
two schemes. Hill and Pullin [12] use a version in which the non-shock-capturing scheme is centered rather
than upwind-biased, thereby reducing the overall dissipation in smooth flow regions. Kim and Kwon [13] pro-
pose an additional formulation of a hybrid central-difference WENO scheme with an alternative weighting
function for the two schemes.

Rather than combining two different schemes and choosing when to use each one, in this paper we apply a
modified version of Jiang and Shu’s method everywhere in the flowfield. The purpose of the non-linear adap-
tation mechanism in WENO schemes is choosing when to use the optimal stencil and when to use a smaller
stencil to avoid interpolation across high gradients (which result in numerical oscillations). Thus, there are two
sources of WENO dissipation: that associated with the adaptation mechanism and that of the optimal stencil.
Fig. 1. Numerical schlieren from the DNS of a shockwave/turbulent boundary layer interaction. The incoming boundary layer is at Mach
3 and Reh = 2400 [3,4].
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Here, we focus on reducing the dissipation of the optimal stencil and assess the resulting scheme for the
detailed simulation of compressible turbulence. Wang and Chen [14] perform a similar study where they opti-
mize the candidate and optimal stencils of Jiang and Shu upwind biased WENO schemes, while minimizing
the error in wavenumber space and applying the schemes to linear problems.

The modifications that we make to Jiang and Shu’s scheme are to (i) add an additional candidate stencil so
that the set of candidates is symmetric, rather than upwind-biased, and (ii) use bandwidth optimization to
determine the weights for the optimal stencil, maintaining a small amount of dissipation at high wavenumbers.
The essential idea of bandwidth optimization is to minimize the truncation error on a given grid. In traditional
order optimization, the goal is to minimize the error most rapidly as the grid is refined. Ultimately, we choose
to specify constraints from each type of optimization.

Thus in this paper, we present bandwidth-optimized WENO schemes for the direct numerical simulation of
turbulent compressible flows. In Sections 2 and 3, we briefly describe the WENO-JS scheme and the concept of
bandwidth for a numerical scheme. In Section 4, we present bandwidth-optimized WENO schemes that are
suitable for DNS of turbulence. In Section 5.5, we assess and validate the schemes in canonical test problems
and in Sections 6 and 7, we use the new schemes in DNS of compressible isotropic turbulence and turbulent
boundary layers. We present the conclusions in Section 8.
2. WENO method of Jiang and Shu

We describe the WENO method of Jiang and Shu [8] in the context of the scalar, one-dimensional advec-
tion equation,
ou
ot
þ o

ox
f uð Þ ¼ 0: ð1Þ
This model equation represents the decoupled forms of equations belonging to any system of hyperbolic con-
servation laws after they are transformed from physical into characteristic space. If the spatial domain is dis-
cretized such that xi = iD, where D is the grid spacing, and ûi is the numerical approximation to u(xi), Eq. (1)
may be cast into the semidiscretized form
dûi

dt
¼ � 1

D
f̂ iþ1

2
� f̂ i�1

2

� �
; ð2Þ
where f̂ iþ1=2 is a numerical approximation of f(u(xi+1/2)). Once the right-hand side of this expression has been
evaluated, numerical techniques for solving ordinary differential equations, such as Runge–Kutta methods,
may be employed to advance the solution in time. To ensure stability, f(u) is generally split into f +(u), which
has a strictly non-negative derivative, and f �(u), which has a strictly non-positive one.

WENO schemes compute f̂ þiþ1=2 through interpolating polynomials on a number of overlapping candidate
stencils, each containing r grid points. In the WENO-JS method, there are r candidate stencils. The one most
upwinded candidate stencil ranges over mesh point indices (i � r + 1) to i, the fully downwinded candidate
stencil ranges over i to (i + r � 1), and the other candidate stencils fall in between. Fig. 2 provides a schematic
of this arrangement. Note that this collection of stencils is not symmetric about the point iþ 1

2

� �
, and thus the

final combination is likely to be biased toward the upwind direction.
S1

S0

S2

i−2 i−1 i i+3i+1 i+2

Fig. 2. Candidate stencils Sk for the numerical flux f̂ þiþ1=2 when r = 3 in the WENO-JS method.
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If the flux approximation on stencil k, which contains r grid points, is designated qr
k and the weight assigned

to that stencil is xk, the final numerical approximation becomes
f̂ þ
iþ1

2
¼
Xr�1

k¼0

xkqr
k: ð3Þ
Specifically, qr
k are rth-order accurate polynomial interpolants evaluated at xi+1/2, computed by
qr
kjiþ1

2
¼
Xr�1

l¼0

ar
klf ðui�rþkþlþ1Þ; ð4Þ
where ar
kl are the stencil coefficients. The weights are defined by
ak ¼
Cr

k

ðeþ ISkÞp
ð5Þ
and
xk ¼
akPr�1
k¼0ak

: ð6Þ
The constant e prevents division by zero, and p may be varied to increase or decrease WENO adaptation sen-
sitivity. The smoothness measurement ISk becomes large when discontinuities are present within stencil k and
remains relatively small otherwise. When r 6 4, the strict definition of ISk as presented by Jiang and Shu [8]
may be expressed in the ‘‘nice’’ form
ISk ¼
Xr�1

m¼1

Xr�1

l¼0

dr
kmlf ui�rþkþlþ1ð Þ

 !2

; ð7Þ
where dr
kml are additional tabulated coefficients. In completely smooth regions, each candidate stencil is equally

desirable, and xk revert to the optimal weights Cr
k.

The corresponding stencil diagram for f̂ �iþ1=2 is simply a mirror image of Fig. 2. The total number of grid
points available to the WENO-JS numerical flux in Eq. (3) is (2r � 1). Consequently the maximum order of
accuracy of the WENO-JS algorithm is (2r � 1). The order-optimized optimal weights C3

k and C4
k as well as the

coefficients a3
kl, a4

kl, d3
kml, and d4

kml are tabulated in Appendix.
3. Bandwidth properties of a numerical scheme

Bandwidth-resolving efficiency is a measure of the frequency resolution achieved by a numerical scheme
and is therefore important for the detailed simulation of turbulence, in which relevant length scales span sev-
eral orders of magnitude. The computational grid itself contributes to bandwidth properties: the largest resolv-
able wavelength is equal to the length of the domain, and the smallest is equal to two grid spacings. The latter,
however, is a theoretical limit because numerical methods may impose additional constraints. Though spectral
methods are designed to fully resolve all available wavenumbers, their global operations render them ineffi-
cient for parallel computing. Alternatively, finite-difference schemes, which are local in nature and thus min-
imize interprocessor communication, cannot capture the highest wavenumbers supported by the grid. WENO
methods belong to the second class.

The bandwidth properties of linear numerical schemes are determined by Fourier analysis. Consider a pure
harmonic function
f ðxÞ ¼ eikx; ð8Þ
in which x is position and k is wavenumber. Then
f 0ðxÞ ¼ ikf ðxÞ ð9Þ
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and, if we define n as any integer and D as grid spacing,
f ðxþ nDÞ ¼ einkDf ðxÞ: ð10Þ

A general finite-difference method approximates the first derivative f 0 according to the formula
~f 0ðxÞ ¼ 1

D

X
n

anf ðxþ nDÞ; ð11Þ
in which an are non-dimensional stencil coefficients which uniquely define the particular scheme. (The tilde
indicates that this numerical derivative is equivalent to the analytic derivative of some close but unknown
function ~f .) We may equate Eqs. (9) and (11) to yield
i~kf ðxÞ ¼ 1

D

X
n

aneinkDf ðxÞ: ð12Þ
If we define the scaled wavenumber j by j = kD, Eq. (12) reduces to
~j ¼ �i
X

n

aneinj; ð13Þ
where ~j is known as the modified wavenumber; through the an coefficients, which define the finite difference
scheme, ~j is the numerical approximation to j. A numerical method that fully resolved all wavenumbers
would produce ~j ¼ j for 0 6 j 6 p.

Fig. 3 presents ~jðjÞ for various finite-difference methods. Above ~j ¼ 0 are the real parts, which describe
phase errors, and below are the imaginary parts, which describe dissipative amplitude errors. For example,
the first-order backward and second-order central difference schemes have identical phase-error characteris-
tics, but the backward difference scheme generates significant dissipation while the central scheme produces
none. One approach to optimizing bandwidth properties is to delay the separation of the real part of ~j from
~j ¼ j to the highest feasible wavenumber. For such a process Lele [15] defines phase error as ð~j� jÞ=j and
bandwidth-resolving efficiency index as the value of j/p for which this error first rises above an arbitrary
threshold e. The sixth-order accurate Padé scheme, which is included in Fig. 3, was designed using this
approach [15] and is commonly used for the DNS of shock-free turbulent flows. A second and often interwo-
ven approach to optimizing bandwidth properties is to shift dissipation errors to those wavenumbers for which
the phase errors are already considerable. This allows small amounts of deliberate dissipation to continue to
stabilize a simulation without corrupting the well-resolved part of the spectrum.

The optimal weights define a linear numerical scheme; this scheme can be analyzed to determine its band-
width properties with Fourier analysis. The optimal weights specify the upper bound of WENO bandwidth
performance, which is achieved when the adaptation mechanism is switched off. Fig. 4 plots ~jðjÞ for the
WENO-JS optimal stencil when r = 3 and r = 4 as well as for the sixth-order Padé scheme. When e is set
to 0.01, Lele’s bandwidth-resolving efficiency index is 0.35 for r = 3 and 0.42 for r = 4. In order to restrict dis-
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Fig. 3. Bandwidth efficiency for several numerical schemes.
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Fig. 4. Bandwidth efficiency for WENO-JS.

M.P. Martı́n et al. / Journal of Computational Physics 220 (2006) 270–289 275
sipation to wavenumbers for which phase errors are greater than the more lenient threshold of 20%, amplitude
errors should be negligible for j < 2. Quantifying amplitude errors as precisely as phase errors is difficult
because ideal dissipation is zero everywhere, but visual inspection of Fig. 4 suggests that the WENO-JS
method does not satisfy this condition.

4. Bandwidth-optimized WENO method

The bandwidth-optimized WENO method [16] modifies the WENO-JS method according to two distinct
strategies. Recall that the second-order central scheme described in Fig. 3, unlike the related first-order back-
ward scheme, exhibited zero amplitude errors; this is typical of central numerical methods. Also consider the
observation in Section 2 that the center of the stencil collection represented by Fig. 2 lies slightly upwind of the
point ðiþ 1

2
Þ. If an additional candidate stencil were available downwind of that point, the collection would be

symmetric, and thus the optimal weights would be theoretically capable of providing zero dissipation. This
constitutes the first modification, which we call WENO-SYM, and Fig. 5 depicts the new candidate stencil
arrangement for r = 3.

Including an extra candidate stencil changes only a few of the equations of Section 2. The final flux approx-
imation of Eq. (3) becomes
f̂ þ
iþ1

2
¼
Xr

k¼0

xkqr
k; ð14Þ
while the particular values of the coefficients ar
kl and dr

kml, remain unaffected. Because stencil r contains purely
downwind information, preferential weighting of that stencil at the expense of the others could cause instabil-
ities. Therefore, after the smoothness measurements ISk are computed via Eq. (7), ISr is further constrained to
satisfy
S1

S0

S3

S2

i−2 i−1 i i+3i+1 i+2

Fig. 5. Candidate stencils Sk for the numerical flux f̂ þiþ1=2 when r = 3 in the WENO-SYM method.
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ISr ¼ max
06k6r

ISk: ð15Þ
This ensures that the normalized weight xr can be no larger than the least of all xk.
Since the total number of grid points available for the calculation of f þiþ1=2 has increased, the optimal

weights of the WENO-SYM method differ from those of the WENO-JS method. The WENO-SYM order-
optimized optimal weights Cr

k can now provide 2rth-order of accuracy as opposed to (2r � 1)th-order, and
we designate this scheme WENO-SYMOO. These optimal weights result in an optimal stencil with no numer-
ical dissipation; the C3

k and C4
k are listed in Appendix.

On the other hand, one may design bandwidth-optimized optimal weights ~Cr
k that maximize Lele’s band-

width-resolving efficiency index, and we refer to this scheme as WENO-SYMBO. This bandwidth optimiza-
tion technique constitutes the second modification of the WENO-JS method, and details about the process
may be found in [16–18]. Namely, the bandwidth optimization is expressed as the minimization of an inte-
grated error function. Following [16], the error function used is
I ¼
Z p

0

emðp�jÞ r½Rðj0Þ � j�2 þ ð1� rÞ½Iðj0Þ � c sinlðj=2Þ�2
� �

dj: ð16Þ
In this function, the optimal weights embedded in j 0 are the free parameters. We have chosen to define the
stencil coefficients ar

kl, also embedded in the modified wavenumber, completely through the order of accuracy
constraints. In so doing, we specify the resulting schemes will be rth-order accurate.

Recall the phase errors are associated with the real part of the modified wavenumber Rðj0Þ, and the ampli-
tude errors with the imaginary part Iðj0Þ; r = 1/2 specifies each type has equal importance. The sine term is
used to add a dissipative bias (c = �1) to the optimal weights, particularly at high wavenumbers as specified
by l = 16. Finally the exponential term heavily weights the error at the lower end of the spectrum; we chose
m = 6 for the r = 3 weights, and m = 8 for r = 4. As finite difference schemes cannot resolve the highest wave-
numbers, the errors for these wavenumbers are deemphasized in the minimization procedure.

The error function and the parameters (r, l, m and c) we have used were developed by trial and error. Ulti-
mately, the bandwidth-optimized optimal weights we ‘‘derived’’ are subjective, but not arbitrary. Regarding
the phase error, the optimization parameters were chosen to extend the well-resolved part of the spectrum
while maintaining essentially the same accuracy as the order-optimized weights at low wavenumbers. Regard-
ing the truncation error terms of the optimal stencil, the optimization affected only the higher order terms.
(This is achieved by retaining the order-optimized candidate stencil coefficients ar

kl.) The amount of dissipation
added was subjectively chosen, but is much less than the WENO-JS scheme, and could be reduced or elimi-
nated entirely if stability were not an issue.
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Bandwidth efficiency for the (a) WENO-SYMOO and (b) WENO-SYMBO optimal stencils in comparison with the WENO-JS
l stencil and a sixth-order accurate Padé scheme.
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Mathematica [19] was used to perform the minimization and determine ~C3
k , and ~C4

k , which are listed in
Appendix. Fig. 6 displays the bandwidth properties for the WENO-SYMOO and WENO-SYMBO optimal
stencils as well as that for the original WENO-JS. Though the new order-optimized scheme takes maximum
advantage of the symmetric stencil collection to generate zero amplitude errors, its phase errors are not
improved. Only bandwidth-optimized optimal weights can accomplish the latter goal. The bandwidth-resolv-
ing efficiency index of the WENO-SYMBO scheme is 0.49 (compared to 0.35) for r = 3 and 0.56 (compared to
0.42) for r = 4.

Note that we have modified the linear part of the weighted ENO scheme, the optimal stencil, which is used
only when all the candidate stencils have equally smooth data. The non-linear part of the scheme, the adap-
tation mechanism, is also a source of numerical dissipation, which has not been optimized here.

5. Canonical test problems

In this section, we assess the WENO-SYM schemes and compare them to WENO-JS in problems without
turbulence. For all the test cases presented here, a third-order Runge–Kutta scheme is used to advance the
solution in time. For all simulations and schemes � = 1.0 · 10�10 and p = 1, unless indicated otherwise. It
should be noted that the original WENO-JS formulation employs p = 2, which is a more dissipative choice
than p = 1.

5.1. Propagation of a smooth disturbance

To assess the dissipation of the bandwidth-optimized scheme relative to that of the original WENO-JS
scheme, we consider the propagation of a linear one-dimensional disturbance. The governing equation is
the linear advection equation, Eq. (1), with f(u) = u. Namely,
ou
ot
þ ou

ox
¼ 0: ð17Þ
We initialize the disturbance at t = 0 with a sine wave
uðxÞ ¼ sin
2px
aD

� �
; ð18Þ
where aD is the wavelength of the disturbance and a represents the number of grid points per wavelength
(PPW). We use two tests with 16 and 8 PPW, which correspond to j = 0.393 and 0.785, respectively.

Fig. 7 shows the solution given by the different WENO schemes after the waveform has propagated one
wavelength. In Fig. 7(a) for 16 PPW, all WENO schemes represent the exact solution accurately. As we coar-
sen the grid to 8 PPW, Fig. 7(b), the amplitude of the wave relative to the exact solution is reduced by the
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Fig. 7. Solution to the one-dimensional wave equation with (a) 16 PPW and (b) 8 PPW.
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numerical dissipation. The WENO-SYMBO is the least dissipative WENO scheme, followed by WENO-JS
with p = 1 and the original WENO-JS with p = 2.

5.2. Shock tube problem

Fluid motion through a shock tube requires the resolution of shockwaves and expansion waves in laminar
flow. The flow is one-dimensional and inviscid. The governing equations are the inviscid Navier–Stokes equa-
tions, or Euler equations, which can be written in conservation form as
Fig. 8.
norma
oq
ot
þ o

ox
ðquÞ ¼ 0;

oðquÞ
ot
þ o

ox
ðqu2 þ P Þ ¼ 0;

oE
ot
þ o

ox
½ðE þ P Þu� ¼ 0;

ð19Þ
where q is the density and u is the fluid velocity; E ¼ 1
2
qu2 þ qcvT is the total energy per unit volume, where cv

is the constant-volume specific heat and T is the gas temperature; and P is the pressure. The ideal gas law,
P = qRT relates the thermodynamic variables and R is the gas constant.

In the initial flow configuration, a diaphragm separates a low-pressure (expansion) chamber from the high-
pressure (compression) chamber. The basic governing parameter of the shock tube is the pressure ratio P4/P1.
The two chambers may be at different temperatures T1 and T4, where subscripts 1 and 4 correspond to the low-
pressure and high-pressure conditions, and might contain different gases with constants R1 and R4. The dia-
phragm raptures at t = 0. For t > 0, a shock propagates into the expansion chamber with speed us, and an
expansion wave propagates into the compression chamber with finite speed a4 at its front. Thus there is the
region where the fluid has been traversed by the shock and that of the fluid traversed by the expansion wave.
The interface between these two regions is a contact surface, also known as contact discontinuity, that marks
the boundary between the fluids which were initially on either side of the diaphragm.

We consider the following conditions: P4/P1 = 2, T4/T1 = 1 and R4/R1 = 1. The diaphragm is located at
x/L = 0.5, where L is the length of the shocktube, and we use 224 equispaced grid points. Figs. 8 and 9 plot
the solution at time t = 0.3L/a0 for r = 3 and r = 4, respectively. Pressure and density are shown to identify the
different regions within the shocktube. For r = 3, all WENOs give accurate results. For r = 4, WENO-JS with
p = 2 and WENO-SYMBO give accurate results, whereas WENO-JS with p = 1 and WENO-SYMOO exhibit
dispersive errors in the density profile.

5.3. Shu–Osher’s problem

This test problem includes the propagation of a Mach 3 (where the Mach number is the fluid velocity over
the speed of sound) shockwave over smooth density fluctuations and was first proposed by Shu and Osher [7].
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Solution to a shock tube problem for the Euler equations for various WENO schemes with r = 3. (a) Density and (b) pressure
lized using initial values.
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Fig. 9. Solution to a shock tube problem for the Euler equations for various WENO schemes with r = 4. (a) Density and (b) pressure
normalized using initial values.
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The initial non-dimensional flow conditions are u = 0, p = 1, and q = 1 + 0.2sin(5x) for x P �4; for x < 4,
u = 2.629369, p = 10.33333 and q = 3.857143. In this test problem, small scale features follow the shockwave
as it propagates from left to right. Resolving these structures is a good test of the bandwidth efficiency of a
shock-capturing scheme. The governing equations are Eqs. (20).

The solution is advanced to t = 1.8. The CFL number is 0.2, which is low enough to ensure that time-
advancement errors are dominated by spatial discretization errors. The grid is equispaced. The initial conditions
are fixed at the boundaries for the duration of each simulation. The exact solution to Shu–Osher’s problem is not
known. However, grid converged solutions are obtainable and serve as exact solutions. The reference solution
here was computed by the unmodified WENO-JS scheme with r = 3 and p = 2 on 1600 grid points. Fig. 10(a)
shows the computed density. The pressure is also shown in Fig. 10(b) as a reference for identifying the shock
locations. At t = 1.8, the shock is at x � 2.5. To the right of the shock is the undisturbed, sinusoidal density field.
To the left of the shock are physically correct oscillations at two different frequencies. Oscillations at the higher
frequency follow immediately behind the shock, while oscillations at the same frequency as the initial density
fluctuations extend a greater distance behind the shock. That is, an additional high-frequency component has
been added by the passage through the shock. For the exact solution, even the high-frequency oscillations
are resolved at approximately 60 points per wavelength. In the pressure profile the shock and trailing low-fre-
quency oscillations are clearly discernible, but the high-frequency oscillations are confined to the density profile.
To evaluate the bandwidth-resolving efficiency for the numerical schemes, we will only plot density profiles.

The solutions are presented for a fine grid (400 points) and a coarse grid (200 points). For consistency with
the reference solution, all schemes use p = 2. The high-frequency oscillations farthest from the shock are
examined closely, because these structures are formed at early t and have accumulated the most numerical
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Fig. 10. Exact solution to Shu–Osher’s problem at t = 1.8. (a) Density and (b) pressure.
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error. The density profiles for the r = 3 simulations are shown in Fig. 11(a) and (b) with fine and coarse grids,
respectively. On the fine grid, WENO-SYM resolves the extrema. In contrast, WENO-JS is slightly damped.
All WENO schemes yield damped solutions, however, the WENO-SYM solutions are less dissipative than that
of the WENO-JS. While not shown, there is no difference between the behavior of the WENO-JS and WENO-
SYM solutions near the shock. Similar results are found for WENO4 with slightly better predictions of the
wave amplitudes.

5.4. Weak shock interacting with large-magnitude fluctuations

This test problem is similar to the Shu–Osher’s problem. However, the flow conditions are modified to con-
sider a weak shock propagating over smooth, large-amplitude density fluctuations. The initial conditions are
u = 0.4142, P = 1.4018 and q = 0.6357 for x P �4 and u = 0, P = 1.0, q = 0.5 + 0.1sin (5x) for x < 4. This
condition results in a weak shock of strength Mach 1.1 interacting with density fluctuations with magnitude
of the order of 20% of the mean density. With this case, we test the efficiency of the schemes to distinguish
between shocks and turbulence fluctuations. The governing equations are Eqs. (20).

As in Section 5.3, the solution is advanced to t = 1.8, the CFL number is 0.2, the grid is equispaced and the
initial conditions are fixed at the boundaries for the duration of each simulation. The grid converged solution
is used as the exact solution and is computed using the WENO-JS scheme with r = 3 on 400 grid points. For
consistency, all schemes use p = 2. The exact density and pressure profiles are given in Fig. 12. Fig. 13(a) and
(b) plots the density profiles for a fine grid (100 points) and a coarse grid (50 points), respectively. The results
are similar to those found in Shu–Osher’s problem. On the fine grid, WENO-SYM resolves the extrema and
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Fig. 11. Solution to Shu–Osher’s problem at t = 1.8 for the various WENO schemes with r = 3 and p = 2: (a) 400 and (b) 200 grid points.
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Fig. 12. Exact solution to a one-dimensional weak–shock interaction with large-magnitude fluctuations at t = 1.8.
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Fig. 13. Solution to a one-dimensional weak–shock interaction with large-magnitude fluctuations at t = 1.8 for the various WENO
schemes with r = 3 and p = 2: (a) 100 and (b) 50 grid points.
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WENO-JS is slightly damped. On the coarse grid all WENO yield heavily damped solutions. All schemes dis-
tinguish between the weak shock and the large-amplitude fluctuations.

5.5. Propagation of an oblique shock

In this section, we study the effect of grid-to-shock alignment by considering the Shu–Osher problem in two
dimensions. Fig. 14 shows a sketch of this flow, where the shock convects at an angle h with respect to the
x-coordinate axis of the computational domain. We test two angles, h = 45� and 22�. The governing equations
are Eqs. (20) and the flow conditions are those of Section 5.3. The grid is equispaced and the resolution in both
directions matches that of the one-dimensional problem with 200 grid points. With this constrain, the resulting
grids have 280 · 56 and 450 · 45 grid points for h = 45� and 22�, respectively.

Fig. 15(a) and (b) plots the density profiles for the oblique Shu–Osher’s problem the WENO-SYMBO
scheme with r = 3 for h = 22� and 45�, respectively. We observe no deterioration of the solution due to
grid-to-shock misalignment. In fact, the solution is less dissipative for the oblique shock problem since,
although the grid spacing in the x and y directions are the same as for the one-dimensional case, the grid-res-
olution normal to the shock direction decreases. See Fig. 14. That is the effective grid resolution in PPW is
greater at h = 45�.
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Fig. 14. Sketch of the oblique Shu–Osher’s problem.
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Fig. 15. Solution to the oblique Shu–Osher’s problem at t = 1.8 for WENO-SYMBO with r = 3 and varying shock angle: (a) h = 22� and
(b) h = 45�.
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6. Isotropic turbulence

Turbulence is an irregular motion that can be described by statistical values, depending on both position
and time, of the quantities that characterize the flow field. When all possible states of turbulence are equally
probable at any given point of the flow field, turbulence is said to be homogeneous. When turbulence is iso-
tropic, the statistical averages are independent of the coordinate system. Isotropic, homogeneous turbulence is
an idealization and its study is the simplest possible study of turbulence. In this section, we consider decaying
isotropic turbulence to test the efficiency of the WENO-SYMBO methods.

The governing equations are the compressible Navier–Stokes equations.
oq
ot
þ o

ox
ðquÞ ¼ 0;

oðquÞ
ot
þ o

ox
ðqu2 þ P � rijÞ ¼ 0;

oE
ot
þ o

ox
½ðE þ P Þuþ qj � uirij� ¼ 0;

ð20Þ
where r is the shear stress tensor given by a linear stress–strain relationship
rij ¼ l
oui

oxj
þ ouj

oxi

� �
� 2

3
l

ouk

oxk
dij; ð21Þ
where l is the viscosity, which is given by l ¼ lref
T

T ref

� �n
with the reference values lref and Tref taken for air at

atmospheric conditions; and qj is the heat flux given by
qj ¼ �j
oT
oxj

; ð22Þ
where j is the thermal diffusivity, which is related to the gas viscosity by j = 3.5lR for air.
The governing parameters for decaying isotropic turbulence are the turbulent Mach number Mt = q/a and

the Reynolds number based on the Taylor microscale Rek = quRMSk/l, where q = Æuiuiæ, Æ Æ æ indicates an
ensemble average, ui is the velocity in the ith direction, k is the Taylor microscale and uRMS is the root-
mean-squared of the velocity in one direction.

We first consider nearly incompressible flow conditions where shockwaves are not present and the compar-
ison against a sixth-order accurate Padé scheme is meaningful. The initial flow conditions are Mt = 0.1 and
Rek = 35, and the grids are equispaced. We simulate the decay of isotropic turbulence for one non-dimen-
sional time period based on the initial large-eddy turn over time, st = k/uRMS. The length of the simulation
and the simulation parameters are representative of those used to study fundamental physical phenomena
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or develop turbulence models in isotropic turbulence [20–22]. Fig. 16(a) shows the temporal evolution of tur-
bulent kinetic energy for the Padé and WENO methods with r = 3 on meshes with 643 and 1283 grid points.
scheme gives grid converged results with 643 grid points, whereas the WENO schemes are more dissipative and
require 1283. Fig. 16(b) shows the energy spectra at st = 1.0 for the same simulations. Aliasing errors are found
for the WENO scheme with 1283 grid points in the tail of the spectrum, which does not affect the results. than
WENO-JS. Similar results are found for r = 4 in Fig. 17.

We now consider a shock-containing simulation with initial conditions Mt = 1.5 and Rek = 50. For this
Reynolds number case, 1923 grid points are required to obtain grid-converged results, where convergence is
achieved in the sense that the temporal decay of turbulent kinetic energy and the distribution of energy in fre-
quency space do not change as the resolution is further decreased. In addition, Rek is high enough so that the
data exhibit an inertial range. Fig. 18(a) shows the energy spectra at st = 1.5. We observe that the spectrum
exhibits the inertial range with slope k�5/3, showing the accuracy of the data. Fig. 18(b) shows contours of
density on a two-dimensional plane. The steep gradients show the location of shockwaves.

As reference, we can compute the ratio of the average shock thickness to the smallest turbulence length
scale in the flow. The shock thickness is of the order of the molecular mean free path, l. The smallest length
scale is given by the Kolmogorov length scale, g. These are given by
Fig. 16
(a) Tem

Fig. 17
(a) Tem
l ¼ l
q

ffiffiffiffiffiffiffiffiffiffiffi
p
2

1

RT

r
;

g ¼ k15�0:25Re�0:5
k :

ð23Þ
In turn l/g is about 0.42. To determine the numerical shock width, ks, we use a shock-detection algorithm [23].
The numerical approximation gives ks/g = 6.25.
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7. Compressible turbulent boundary layer

Simulations of turbulent boundary layers are computationally expensive. Thus, we consider only the results
given by the bandwidth-optimized WENO scheme, WENO-SYMBO, with r = 3. This scheme has a narrower
stencil than r = 4 and it is therefore less expensive on a given grid. The governing equation is Eq. (21).

We consider the experimental conditions of Debiève [24–26] with M = 2.32, Reynolds number based on the
momentum thickness Reh = 4000 and Elena [27,28] with M = 2.32 and Reh = 4700. The number of grid points
and domain size are 328 · 256 · 120 and 7.1d · 2.1d · 16.6d in the streamwise, spanwise and wall-normal
directions, respectively. The initial conditions are those of Martı́n [29] and we use rescaling boundary condi-
tions [30] to provide the inflow. Thus, we simulate a fixed spatial location of a spatially developing boundary
layer and Reh is about 4600. We gather statistics for 70 non-dimensional time periods st = d*/Ue, where d* is
the displacement thickness and Ue is the velocity at the boundary layer edge. The spacing between fields is
about 1.5 st. The results are validated against the experimental data.

Fig. 19 plots the mean flow profiles for the DNS and experimental data. Fig. 20(a) and (b) plots the nor-
malized magnitude of velocity and temperature fluctuations, respectively, in comparison with the experiments
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Fig. 19. Comparison between DNS using the bandwidth-optimized WENO scheme at M = 2.32 and Reh = 4450 and experimental data
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of Debiève, and Fig. 21(a) and (b) shows the magnitude of the streamwise and wall-normal velocity fluctua-
tions in comparison to the experiments of Elena, where the data are normalized using the edge and friction
velocities respectively. The criterion for good accuracy is that the simulation data agrees with the experimental
data to within the scatter of the experimental data. It should be noted that accessing the near-wall region
(z/d 6 0.2) is not possible experimentally. Thus, the experimental data are not accurate very close to the wall.
The DNS data are within the scatter of the experimental data.

8. Conclusions

We present two formulations of a symmetric WENO method for the simulation of turbulent compressible
flows. The new methods are based on the scheme of Jiang and Shu [8] and are optimized to maximize order of
accuracy and bandwidth while minimizing dissipation. Third-order- and fourth-order-accurate formulations
are considered. The accuracy of the methods is assessed for canonical problems such as shock tube flow,
Shu–Osher’s problem, oblique Shu–Osher’s problem, weak shockwave propagating into large-amplitude
smooth density fluctuations and the propagation of smooth fluctuations. It is found that the order-optimized
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scheme WENO-SYMOO can result in instabilities near contact surfaces. The results from the canonical flow
simulations also show that the bandwidth-optimized schemes are less dissipative than the original WENO-JS.

Direct numerical simulations of turbulent flows are also considered. It is shown that both schemes give
accurate turbulence results. Incompressible simulations of decaying isotropic turbulence show good agreement
between WENO-SYMBO and the sixth-order-accurate, central Padé scheme. In addition, WENO-SYMBO
can be used to simulate higher turbulent Mach number isotropic turbulence with DNS. Data at Mt = 1.5 show
accurate frequency distribution of turbulent kinetic energy with a k�5/3 inertial range, and the flow field exhib-
its an abundant number of shockwaves. Finally, the DNS data of a supersonic boundary layer simulated with
a WENO-SYMBO scheme shows good agreement with experimental data.

Majda and Osher [31] show that when shocks are involved, numerical methods loose formal order of accuracy.
It has also been shown [32,33] that the convergence rate reduces to first order at a discontinuity, and first order
errors at the shock propagate out into the post-shock region by following characteristics that emerge at the shock
[34]. The solution error can be characterized by a high-order component and a first-order component, which is
nearly independent of the designed numerical error [35]. For smooth flows, the solution is formally high-order
accurate. Whereas for flows containing under-resolved shocks, the solution is no longer formally high-order
accurate. Thus, those portions of the domain where information propagates through the shock are subject to
the shock-capturing error. This issue is endemic to all shock-capturing methodologies, including hybrid methods.
In the present simulations of compressible turbulence, the shock-capturing error is considered acceptable.

The benefit of WENO methods is robust shock capturing. So far, the limitation for these methods is the
slow grid convergence. In the present manuscript, we have addressed the reduction of phase and dissipation
errors in the linear part of the scheme. Further optimization of the non-linear part might lead to improved grid
convergence and is the subject of future work.
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Appendix

This appendix presents the weights and coefficients for the WENO-JS, WENO-SYMOO and WENO-
SYMBO schemes (see Tables 1–7).
Table 1
Candidate flux stencil coefficients a3

kl for both WENO-JS and WENO-SYM

l = 0 l = 1 l = 2

k = 0 2/6 �7/6 11/6
k = 1 �1/6 5/6 2/6
k = 2 2/6 5/6 �1/6
k = 3 11/6 �7/6 2/6

Note that k = 3 is relevant only for the latter.

Table 2
Candidate flux stencil coefficients a4

kl for both WENO-JS and WENO-SYM

l = 0 l = 1 l = 2 l = 3

k = 0 �6/24 26/24 �46/24 50/24
k = 1 2/24 �10/24 26/24 6/24
k = 2 �2/24 14/24 14/24 �2/24
k = 3 6/24 26/24 �10/24 2/24
k = 4 50/24 �46/24 26/24 �6/24

Note that k = 4 is relevant only for the latter.



Table 3
Smoothness measurement stencil coefficients d3

kml for both WENO-JS and WENO-SYM

m = 1

l = 0 l = 1 l = 2

k = 0 1/2 �4/2 3/2
k = 1 �1/2 0 1/2
k = 2 �3/2 4/2 �1/2
k = 3 �5/2 8/2 �3/2

m = 2

l = 0 l = 1 l = 2

k = 0 b2 �2b2 b2

k = 1 b2 �2b2 b2

k = 2 b2 �2b2 b2

k = 3 b2 �2b2 b2

Note that k = 3 is relevant only for the latter. b2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
13=12

p
.

Table 4
Smoothness measurement stencil coefficients d4

kml for both WENO-JS and WENO-SYM

m = 1

l = 0 l = 1 l = 2 l = 3

k = 0 �2/6 9/6 �18/6 11/6
k = 1 1/6 �6/6 3/6 2/6
k = 2 �2/6 �3/6 6/6 �1/6
k = 3 �11/6 18/6 �9/6 2/6
k = 4 �26/6 57/6 �42/6 11/6

m = 2

l = 0 l = 1 l = 2 l = 3

k = 0 �b2 4b2 �5b2 2b2

k = 1 0 b2 �2b2 b2

k = 2 b2 �2b2 b2 0
k = 3 2b2 �5b2 4b2 �b2

k = 4 3b2 �8b2 7b2 �2b2

m = 3

l = 0 l = 1 l = 2 l = 3

k = 0 �b3 3b3 �3b3 b3

k = 1 �b3 3b3 �3b3 b3

k = 2 �b3 3b3 �3b3 b3

k = 3 �b3 3b3 �3b3 b3

k = 4 �b3 3b3 �3b3 b3

Note that k = 4 is relevant only for the latter. b2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
13=12

p
and b3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
781=720

p
.

Table 5
Order-optimized optimal weights Cr

k for WENO-JS when r = 3 and r = 4

k C3
k C4

k

0 1/10 1/35
1 6/10 12/35
2 3/10 18/35
3 N/A 4/35
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Table 6
Order-optimized optimal weights Cr

k for WENO-SYMOO when r = 3 and r = 4

k C3
k C4

k

0 1/20 1/70
1 9/20 16/70
2 9/20 36/70
3 1/20 16/70
4 N/A 1/70

Table 7
Bandwidth-optimized optimal weights ~Cr

k for WENO-SYMBO when r = 3 and r = 4

k ~C3
k

~C4
k

0 0.094647545896 0.040195483373
1 0.428074212384 0.249380000671
2 0.408289331408 0.480268625626
3 0.068988910311 0.200977547673
4 N/A 0.029178342658
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