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A description of different inflow methodologies for turbulent boundary layers, including validity and
limitations, is presented. We show that the use of genuine periodic boundary conditions, in which no
alteration of the governing equations is made, results in growing mean flow and decaying
turbulence. Premises under which the usage is valid are presented and explained, and comparisons
with the extended temporal approach@T. Maeder, N. A. Adams, and L. Kleiser, ‘‘Direct simulation
of turbulent supersonic boundary layers by an extended temporal approach,’’ J. Fluid Mech.429,
187 ~2001!# are used to assess the validity. Extending the work by Lundet al. @J. Comput. Phys.
140, 233 ~1998!#, we propose an inflow generation method for spatial simulations of compressible
turbulent boundary layers. The method generates inflow by reintroducing a rescaled downstream
flow field to the inlet of a computational domain. The rescaling is based on Morkovin’s hypothesis
@P. Bradshaw, ‘‘Compressible turbulent shear layers,’’ Annu. Rev. Fluid Mech.9, 33 ~1977!# and
generalized temperature–velocity relationships. This method is different from other existing
rescaling techniques@S. Stolz and N. A. Adams, ‘‘Large-eddy simulation of high-Reynolds-number
supersonic boundary layers using the approximate deconvolution model and a rescaling and
recycling technique,’’ Phys. Fluids15, 2398 ~2003!; G. Urbin and D. Knight, ‘‘Large-eddy
simulation of a supersonic boundary layer using an unstructured grid,’’ AIAA J.39, 1288~2001!#,
in that a more consistent rescaling is employed for the mean and fluctuating thermodynamic
variables. The results are compared against the well established van Driest II theory and indicate
that the method is efficient and accurate. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1758218#

I. INTRODUCTION

The simulation of turbulent boundary layers requires
streamwise inflow and outflow boundary conditions. The use
of a buffer domain1 or a sponge layer2,3 in combination with
nonreflecting boundary conditions can successfully handle
the outflow. The specification of the inflow boundary condi-
tions, however, is more problematic and challenging. A tur-
bulence eddy in a boundary layer has the memory of its
upstream history. This fact makes it desirable to specify a
realistic time series of turbulence at the simulation inlet. The
generation of such a time series of turbulence data results in
conflicts between efficiency and accuracy. Creating accurate
inflow conditions may require costly independent simula-
tions or forced transition, and a cost-saving but crude inflow
generation method may need a long development section be-
hind the inlet for the flow evolution to be realistic. Typical
inflow generation techniques can be organized into three cat-
egories, as shown in Fig. 1.

The first category consists of the fringe method,4 the
rescaling method,5 and methods for temporal simulation.6–8

The inflow in this category comes from the outflow with or
without modification. The fringe method distinguishes a
fringe region, in which finite extra terms are added to the

governing equations to remove mass and decrease boundary
layer thickness, and a useful region for data collection, in
which there are no extra terms. In the streamwise direction,
the simulation domain is assembled with one useful region
and two fringes at its ends and periodic boundary conditions
are applied. Thus, the flow that goes out from the down-
stream end of the data collection region comes into the up-
stream end after passing through the two fringes. The method
results in a spatial simulation and can take into account the
streamwise pressure gradient. The rescaling method is based
on scaling laws of turbulent boundary layers. The inflow is
generated by rescaling the flow field at a downstream station
and reintroducing it at the upstream inlet. It can be easily
implemented to yield a spatial simulation and works very
well with little or no transient near the inlet boundary. In
temporal simulations, periodic boundary conditions are used,
artificially making the inflow exactly the same as the outflow.
A turbulence eddy going out from the outlet comes back into
the domain at the inlet without any modifications. To reduce
artificial effects, the streamwise size of the domain should be
large enough at least to decorrelate turbulence eddies at the
inlet and those in the middle between the inlet and the outlet.
A genuine temporal simulation solves the original governing
equations, while improved temporal simulations add forcing
in the governing equations to account for the streamwise
inhomogeneity of boundary layers.

The second category involves inflow generation by out-
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side mechanisms, such as an auxiliary simulation and super-
position of random fluctuations on desired mean profiles. Li
et al.9 present a method to generate the inflow boundary con-
ditions for large eddy simulations~LES! of turbulent free
shear flows. In the method, a time series of instantaneous
velocity planes from an auxiliary simulation is recycled re-
peatedly to provide the inflow. They transform the time sig-
nal into a periodic one using a windowing technique. The
periodicity induced by the inflow takes 25% of their test
domain to die out. Adams10 used a similar approach to pro-
vide the inflow for his direct numerical simulation~DNS! of
a turbulent compression ramp. Large-eddy simulation~LES!
of supersonic compression-ramps by Rizzetaet al.11,12 and
DNS of turbulent flow over a rectangular trailing edge by
Yao et al.13 also use auxiliary simulations to generate turbu-
lence inflow. The specification of the inflow by superposition
of random fluctuations on mean flows is a straightforward
procedure. This procedure is successful in the simulations of
spatially decaying compressible isotropic turbulence.14 Other
implementations with varying degrees of success include
DNS of the spatial laminar-to-turbulent transition15 and DNS
of a backward-facing step.16 The shortcoming of the method
is the requirement of a fairly long development section due
to the lack of proper phase information and nonlinear energy
transfer. Also, it is very hard to control the skin friction and
integral thickness at the end of the development section.
Klein et al.17 develop a method for generating pseudoturbu-
lent inflow. It provides some advantages over the classical
approach that uses random fluctuations. The method is based
on digital filtering of random data and is able to reproduce a
prescribed one-point second order statistics as well as auto-
correlation functions.

The last category has the most straightforward
approach.15,18 The computation of the spatially developing
turbulent boundary layer starts far upstream, where a laminar
profile plus disturbances is set up to allow a transition to
turbulence. No time-dependent inflow is required, but the
cost is daunting. The approach is generally used to investi-
gate transition itself, see Refs. 19–22.

In the current paper, we present an examination of inflow
boundary conditions for compressible turbulent boundary
layers. We first discuss and analyze the use of periodic
boundary conditions toward temporal simulations. In this re-
gard, we introduce the genuine temporal direct numerical
simulation ~TDNS! and show the premises under which
TDNS can be used to generate turbulent boundary layer data.
We then use the extended temporal direct numerical simula-
tion ~ETDNS! ~Ref. 10! to assess the validity of TDNS. To

relax the conditions that must be satisfied for the validity of
TDNS we introduce a new rescaling method that leads to
spatial simulations of compressible turbulent boundary lay-
ers. Results from the rescaling method are given and also
compared to the well-established theoretical predictions.23

Stolz and Adams24 and Urbin and Knight25 implement simi-
lar methods. The differences between these methods and the
present technique are described in Sec. III.

II. PERIODIC BOUNDARY CONDITIONS

Periodic boundary conditions are widely used in the ho-
mogeneous directions of turbulent simulations. The usage is
proved to be valid by many numerical experiments, though it
may not be well justified physically. The advantages of peri-
odic boundary conditions are apparent. No external inputs
are required, Fourier representation is applicable and statis-
tical samples are improved. However, their homogeneity re-
quirement usually limits them to simple geometries, such as
rectangular isotropic turbulence boxes, turbulent plane chan-
nels, and turbulent pipes.

A flat-plate boundary layer under zero-pressure gradient
evolves slowly in the streamwise direction and lacks stream-
wise homogeneity. If the effect of the streamwise inhomoge-
neity is neglected, periodic boundary conditions may be ap-
plied, leading to a temporal behavior of the boundary layer.
The majority of boundary layer transition simulations used
temporal approaches and achieved notable success accompa-
nied with limitations, see Ref. 26. In turbulent boundary
layer simulations, streamwise periodicity may still be as-
sumed, as we address below.

A. TDNS

The use of genuine periodic boundary conditions in the
DNS of a zero-pressure-gradient turbulent boundary layer is
to apply them in the streamwise direction, besides the span-
wise direction, without any change to the governing equa-
tions. As a result, the simulation is temporal instead of spa-
tial and can be referred to as temporal DNS or TDNS. In
theory, TDNS leads to nonstationary flow with developing
mean and decaying turbulence. Also, the wall-normal dis-
placement in the freestream is prohibited. These aftereffects
can be illustrated in different ways. Here, we chose to show
the effects in the context of the turbulent kinetic energy.

Taking the simulation domain as a control volumeV and
denoting its surface asS, as shown in Fig. 2, we integrate the
continuity equation and have the following:

]

]t EV
rdV1 R

S
rujnjdS50, ~1!

wherenj is the normal vector of the surfaceS. Starting from
the continuity and momentum equations, we can deduce the
integral equation for total kinetic energyK (5 1

2ruiui) as

]

]t EV
KdV1 R

S
~ujK2uis i j !njdS

5E
V
pSkkdV2E

V
FdV, ~2!

FIG. 1. Schematic showing inflow generation techniques.
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where s i j 52mSi j 2
2
3mSkkd i j is the stress tensor,m is the

viscosity,Si j 5
1
2(]ui /]xj1]uj /]xi) is the rate-of-strain ten-

sor, andF is the dissipation. With symmetric boundary con-
ditions at the top boundary of the domain, no-slip and no-
penetration boundary conditions at the wall and periodic
boundary conditions in the streamwise and spanwise direc-
tions, no wall-normal displacement at the top boundary fol-
lows Eq.~1! to conserve mass in the domain, and the second
term in Eq.~2! thus vanishes for the zero-pressure-gradient
boundary layer. Noticing that

E
V
pSkkdV5E

V
^pSkk&dV

5^p& R
S
^uj&njdS1E

V
^p8Skk8 &dV

5E
V
^p8Skk8 &dV. ~3!

We can rewrite Eq.~2! as

]

]t EV
KdV5E

V
^p8Skk8 &dV2E

V
FdV, ~4!

where^•& denotes a spatial average in a homogeneous plane
and a prime the fluctuation with respect to a spatial mean.
With the same boundary conditions, the integral equations
resembling Eq.~4! for the mean and turbulent kinetic energy
are, respectively,

]

]t EV
KmdV52E

V
PdV2E

V
fmdV, ~5!

]

]t EV
KtdV5E

V
^p8Skk9 &dV1E

V
PdV2E

V
F tdV, ~6!

where Km5 1
2^r&ũi ũi is the mean kinetic energy,Kt

5 1
2^rui9ui9& is the turbulent kinetic energy,P is turbulence

production,Fm andF t are the mean and turbulence dissipa-
tion, respectively. We use a tilde to denote a mass-averaged
mean and a double prime a fluctuation from a mass-averaged
mean.

ProductionP and dissipationF, Fm , and F t are all
non-negative within the boundary layer. The pressure dilata-

tion in Eqs.~4! and ~6! represents a transfer mechanism be-
tween internal energy and kinetic energy other than dissipa-
tion. The DNS data of Maederet al.6 at Mach 3, 4.5, and 6
and Guariniet al.27 at Mach 2.5 indicate that the pressure
dilatation term is negative in the wall vicinity, resulting in a
transfer of kinetic to internal energy. Away from the near-
wall region, this term assumes a small positive value and it
finally approaches zero at the edge of the boundary layer.
The contribution of the pressure dilatation to the gain of total
and turbulent kinetic energy is negligible compared with the
loss due to dissipationF andF t and the pressure dilatation
itself. The total kinetic energy and the mean kinetic energy in
domainV thus always decrease with time, which results in
the developing of the mean streamwise velocity and the
thickening of the boundary layer, and leads to a decrease in
the turbulence production and the decay of the turbulence.

Nevertheless, in practice TDNS with periodic boundary
conditions may still be used to simulate turbulent boundary
layer flow at a particular streamwise location. The necessary
conditions are that~i! the turbulence can be considered qua-
sisteady, i.e., it adjusts itself to local conditions much faster
than the mean profile develops; and~ii ! for the purpose of
gathering statistics, the sampling time is shorter than the time
scale of the mean profile development. A flow that satisfies
these conditions evolves slowly and can be viewed as a good
approximation of a stationary station of a boundary layer.

The necessity of the second condition is apparent. Oth-
erwise, correct statistics are inhibited as the mean flow
changes apparently in a non-self-similar way. The first con-
dition ensures the second one. It is necessary to initialize the
flow field to nearly equilibrium for the realization of these
conditions. By nearly equilibrium here, we mean that the
terms that contribute to the evolution of the turbulent kinetic
energy are nearly balanced. If the initial flow field is far
away from equilibrium, TDNS may require a long temporal
transient process before it settles down to a quasistationary
status. Thus, without appropriate initial conditions we could
hardly control the skin friction and the boundary thickness at
the end of the transient. Martin28 addresses the procedure for
the initialization of compressible turbulence at nearly equi-
librium conditions. The practical validity and limitations of
TDNS are illustrated in Sec. IV A 1 using simulation data.

FIG. 2. Schematic of the control vol-
ume for analysis in TDNS.
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B. ETDNS

Stationary mean flow and nondecaying turbulence can
be achieved through the addition of forcing to the basic
equations. Realizing the fact that both the boundary layer
thickness and the energy level of the turbulence vary slowly
as functions of the streamwise location, Spalartet al.7,8 in-
troduced a new wall-normal coordinate and then applied a
multiple-scale procedure to approximate the slow streamwise
growth of the boundary layer. The final product is a set of
small forcing terms that are added to the Navier–Stokes
equations. They used the technique and successfully simu-
lated an incompressible turbulent boundary layer at different
streamwise stations. Guariniet al.27 extended the technique
to compressible turbulent boundary layer simulations.

Maederet al.6 further developed the procedure by Spal-
art et al.,7,8 and proposed an extended temporal DNS
~ETDNS! approach in which noa priori assumptions about
the mean flow are required ETDNS computes a flow at a
series of streamwise stations, as seen in Fig. 3, allowing the
spatial mean flow evolution to be approximated from its up-
stream history. When a sufficiently stationary state is reached
at a station, the computational box can be marched down-
stream another spatial step. In ETDNS, the forcing is derived
from the spatial evolution history of the mean flow such that
the parabolized Navier–Stokes equations are recovered,
which is solved locally in time by DNS. Both the mean flow
nonparallelism and its interaction with local fluctuations are
accounted for in the forcing. For the mathematical derivation
of the forcing, we refer to Ref. 6.

There are two remarks worth mentioning for the imple-
mentation of ETDNS. One is about the geometric set-up of a
simulation. The other regards the forcing at the first station
where no upstream history exists, see Fig. 3. The streamwise
extent of the domain should be small enough to ensure mod-

est mean flow variation while long enough for turbulence to
be decorrelated as in TDNS. In contrast to the simulation by
Maeder et al.,6 our simulation presented later relaxes the
former to satisfy the latter. The distance between neighboring
stations also has contradictory requirements. It should be
long enough to avoid overlap of stations but short enough to
achieve the accuracy of the forcing calculation. At the first
few stations, the information about the mean flow develop-
ment from previous stations is either missing or inaccurate,
causing a nonphysical spatial transient. We have the same
experience as Maederet al.6 that the solution can be marched
downstream after the temporal transient has settled down ap-
preciably, even before a stationary state is reached.

The advantages of ETDNS are~i! ETDNS achieves sta-
tionary flow behavior, i.e., the mean profile keeps and the
turbulence sustains;~ii ! the marching process allows ETDNS
to simulate a series of streamwise stations of a spatially de-
veloping boundary layer; and~iii ! ETDNS requires noa pri-
ori assumptions about the mean flow. But, like TDNS and
the approach by Spalartet al.7,8 ETDNS is a temporal tech-
nique in nature and a turbulent eddy does not march from
one station to another.

III. RESCALING METHODS

Temporal approaches, such as TDNS and ETDNS, are
efficient and useful in turbulent boundary layer simulations.
However, they have both physical and numerical limitations.
The bridges connecting temporal and spatial simulations
through Taylor’s hypothesis for supersonic and hypersonic
turbulent boundary layers are broken due to their high com-
pressibility, high turbulence intensities, large mean shear, and
large viscous effects.39 Many simulations directly resort to
spatial approaches. For example, to numerically investigate
the shockwave/turbulent-boundary-layer interaction over a

FIG. 3. Schematic of the domains for
ETDNS.

FIG. 4. Schematic of the rescaling
methodology.
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compression ramp, an inflow–outflow spatial simulation can
not be evaded. Still, good inflow generation techniques are
desired for this kind of spatial simulations. An auxiliary tem-
poral simulation can be used as an inflow generation
device,5,9,10 however there are constraints regarding compu-
tational cost, inflow time periodicity and the control of in-
flow characteristics. An efficient and accurate way to inte-
grate the inflow generation and the main spatial simulation is
highly desirable.

Based on scaling laws of incompressible turbulent
boundary layers, Lundet al.5 proposed a rescaling method to
generate turbulent inflow for simulations of spatially devel-
oping incompressible turbulent boundary layers. The method
rescales the velocity field at a downstream station and then
recycles the rescaled velocity field to the inlet, see Fig. 4.
Compressible extensions of this method have been devel-
oped by Urbinet al.25 and Stolz and Adams.24

The difficulties in the compressible case are that three
extra thermodynamic variables, i.e., temperature, density,
and pressure, must be rescaled and the velocity field and the
temperature field are coupled. The methods by Urbinet al.25

and Stolz and Adams24 overcome the difficulties by assum-
ing that all mean and fluctuating thermodynamics variables
are scaled in the same way as the wall-normal velocity,
which is not justified physically. The scaling of the trans-
formed streamwise velocity holds in the method by Urbin
et al.However, it is inconsistent with the scaling of the mean
temperature and density. Stolz and Adams assume that the
mean density scaled with the freestream value is self-similar
in the inner and outer layers. With this assumption their
method degenerates the scaling laws for the transformed
mean velocity into those of the incompressible case. Both
methods24,25 may work numerically for a zero-pressure-
gradient boundary layer when the recycling station is close to
the inlet. Our approach is different in that it employs more
consistent scalings for all the mean and fluctuating thermo-
dynamic variables. The main assumptions in the method that
is presented here are Morkovin’s hypothesis29 and general-
ized temperature-velocity relationships, which are well justi-
fied both theoretically and experimentally.

Morkovin’s hypothesis29 states that the turbulent time
scale in a boundary layer is independent of Mach number.
Thus, the effects of Mach number are passive to the dynam-
ics of the turbulent boundary layer, and only affect the varia-
tion of the fluid properties. The validity of Morkovin’s hy-
pothesis is the reason why van Driest’s mean-flow scaling is
successful. Following Morkovin’s scaling, we rescale the ve-
locity field taking into account the density variation across
the boundary layer and using the ratio of local density to wall
density (r̄/ r̄w , with an overbar denoting averaging in time
andw indicating a wall quantity!.

Across a boundary layer, the mean pressure is the same
as the freestream, and the state equation for perfect gas indi-
cates that the mean density variation is equivalent to the
mean temperature variation. Thus, the temperature and the
velocity are coupled in the rescaling procedure. We therefore
look for a relation between the mean temperature and the
mean velocity for the velocity scaling. Walz’s equation~also
called modified Crocco relation! is an analytical result from

the governing equations and describes very well the relation
between mean temperature and mean streamwise velocity for
zero-pressure-gradient boundary layers, see Ref. 30. Inspired
by the Walz’s equation, our method assumes a more general
relationship, which may be extended to nonzero-pressure
gradient cases. To rescale the temperature fluctuations, we
also assume relations between the temperature fluctuations
and the velocity fluctuations, including amplitude and phase
relations. In this regard, our method is inspired by the strong
Reynolds analogy~SRA!. However, we should emphasize
that the Walz’s equation and the SRA are not used in our
method. The method that is presented below is more general
in this sense.

Due to the presence of multiple length scales in a turbu-
lent boundary layer, we must treat the rescaling process in a
piecemeal fashion. To rescale the mean streamwise velocity,
we follow Ref. 30 and distinguish the viscous sublayer, the
logarithmic region and the law-of-the-wake region in the
boundary layer. To rescale the mean wall-normal velocity
and turbulence, we divide the boundary layer into the inner
layer and outer layer. The implementation of the piecemeal
procedure is described in Sec. III D. Hereafter, we denote the
streamwise, spanwise and wall-normal coordinates asx, y, z,
respectively, with the corresponding velocity components as
u(5U1u8), v(5V1v8) andw(5W1w8), where a capi-
tal letter represents a mean and a lowercase letter with prime
represents a fluctuation. We denote the recycled downstream
station as (•) r and the inlet (•) i .

A. Mean rescaling

For a flat-plate boundary layer, the mean spanwise ve-
locity V is zero due to the spanwise statistical symmetry, and
the mean pressureP is equal to the freestream value. Thus,
the remaining mean variables to be rescaled are the mean
streamwise velocityU, the mean wall-normal velocityW, the
mean temperatureT, and the mean densityr̄.

1. Mean streamwise velocity

In the viscous sublayer, the viscous shear stress is much
larger than the Reynolds shear stress and is assumed equal to
the skin friction. Taking the effect of the temperature-
dependence of the viscosity, we have

Us

ut
5z1, ~7!

where ut5A(n(]U/]z))w is the friction velocity, z1

5utz/nw is the wall-normal coordinate in viscous length
unit, andUs is the transformed mean streamwise velocity in
the sublayer defined by

Us5E
0

US T

Tw
D n

dU, ~8!

in which T is the mean temperature and the variation of the
viscosity with temperature is given by a power law

m

mw
5S T

Tw
D n

. ~9!
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From here on we use the subscriptsr and i to refer to the
variables at the recycle and inflow conditions, respectively.
When (z1) r5(z1) i , i.e.,

~z!r5
~ut! i

~ut!r

~nw!r

~nw! i
~z! i5

vut

vnw

~z! i , ~10!

in which

vut
5

~ut! i

~ut!r
, vnw

5
~nw! i

~nw!r
, ~11!

we can compute the transformed velocityUs at the inlet from

~Us! i5vut
~Us!r . ~12!

In the logarithmic region~also called inertial sublayer!, the
distancez is assumed to be the only relevant length scale. It
can be taken as the mixing length in Prandt’s mixing length
theory after multiplying a constantk. A logarithmic law is
obtained by using either Prandt’s mixing length theory or just
a scale analysis. The effect of density variation is embodied
in the velocity scale. The logarithmic law reads

U**

ut
5

1

k
ln z11C, ~13!

where C is a constant,U** is the van Driest transformed
velocity which is defined by

U** 5E
0

UATw

T
dU. ~14!

In our scaling method for inflow generation, the above form
of the law in the logarithmic region is not needed. We only
need to use the following self-similar expression:

U**

ut
5 f log~z1!, ~15!

wheref log is assumed to be a universal function, see Ref. 30.
So when (z1) r5(z1) i , we have

~U** ! i5vut
~U** !r . ~16!

In the outer layer of a compressible boundary layer, the dif-
ferent similarity law

Uc** 2U**

ut
5 f wake~h!, h5

z

D
, ~17!

applies, wheref wake is assumed to be independent of stream-
wise locationx, Ue is the freestream velocity, andD is an
integral reference length taken to be the momentum thick-
nessu in our rescaling. As the expression indicates, the law
is named as the velocity-defect law or the law-of-the-wake. It
is well supported by a large number of experiments in zero-
pressure-gradient boundary layers. From scaling scheme
~17!, we can obtain

~U* ! i5vut
~U* !t ,

U* 5Ue** 2U** 5E
U

UeATw

T
dU, ~18!

when (h) r5(h) i , i.e., (z) r5(z) i /vD , where vD

5(D) i /(D) r .

2. Mean wall-normal velocity

From the mean continuity equation, we can approximate
W as

W52
1

r̄ E0

z ]r̄U

]x
dz. ~19!

We estimate the order of]r̄U/]x to be (r̄/x)A( r̄w / r̄)ut .
The order of W then is (z/x)A( r̄w / r̄)ut . So we take
A( r̄w / r̄)ut to be the scale forW. In the inner and the outer
layers of the boundary layer,W is assumed to be scaled as

W

ut
A r̄

r̄w
5 f inner~z1!, ~20!

W

ut
Ar̄/ r̄w5 f outer~h!, ~21!

where functionsf inner and f outer are assumed to be indepen-
dent of streamwise locationx. The scaling ofW above is not
justified physically. However,W is very small relative toU
and is not a dynamically dominant quantity. Thus, a rigorous
treatment ofW can be relaxed.

Applied at the recycling station and the inlet, the scaling
of W leads to

~W! i5vut
vrw

A~ r̄ !r

~ r̄ ! i
~W!r , ~22!

for (z1) r5(z1) i in the inner layer and (h) r5(h) i in the
outer layer.vrw

is given by

vrw
5A~ r̄w! i

~ r̄w!r
. ~23!

3. Mean temperature

When fluctuations are small, to a first-order approxima-
tion, the mean temperatureT and the mean densityr̄ are
related by the state equationT5P/Rr̄ for perfect gas, where
R is the gas constant. Thus, the rescaling ofr̄ follows that of
the mean temperatureT is known.

The mean temperature appears in the transformed mean
streamwise velocitiesUs, U** , and U* . Thus, we need a
relationship to decouple the mean streamwise velocity and
the mean temperature and to produce the rescaling ofT in the
process of rescalingU. For a zero-pressure-gradient bound-
ary layer, Walz’s equation is such a relation and is given by

T

Te
5

Tw

Te
1

Tr2Tw

Te
S U

Ue
D2r

g21

2
Me

2S U

Ue
D 2

, ~24!

whereTr is the recovery temperature, subscripte indicates a
freestream quantity,Me is the freestream Mach number,g is
the ratio of specific heats, andr is the recovery factor. The
recovery temperatureTr and the recovery factorr are related
by the definition of the recovery factor as

Tr5TeS 11r
g21

2
Me

2D . ~25!
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For an adiabatic wall,Tw5Tr and Tr is calculated by Eq.
~25!. For an isothermal wall,Tw is given andTr is still cal-
culated by Eq.~25!. So Walz’s equation tells us that the
relation between the mean temperature and the mean stream-
wise velocity is dependent of the streamwise location only
throughTr , or say the recovery factorr. Experimental data
indicate thatr changes little along a boundary layer. Thus,
taking r to be the same at the recycling station and the inlet
is a good assumption. In turn, Walz’s equation is the same at
the two stations. We may generalize the argument by assum-
ing that the relationship between the mean temperature and
the mean streamwise velocity is independent of the stream-
wise location, as expressed by

T

Te
5 f UTS U

Ue
D , ~26!

wheref UT is a function ofz1 in the inner layer andh in the
outer layer, and it is not a function of the streamwise loca-
tion. Note that for a boundary layer under a nonzero pressure
gradient, Eq.~26! may not take the same form as Walz’s
equation. However, the analytic form of this equation is not
needed for the rescaling method. We can obtain the relation-
ship numerically at the recycling station and then use inter-
polation to decouple the mean streamwise velocity and the
mean temperature at the inlet. The values ofU are obtained
from Us, U** , andU* . To computeUs andU** , we start
the integration from the wall, where the conditions are
known. To computeU* , we start the integration from the
freestream, where the conditions are also known.

B. Turbulence rescaling

The scaling suggested by Morkovin to account for the
mean-density variation appears appropriate to at least Mach
5. When the velocity fluctuations are normalized by the ve-
locity scaleA( r̄w / r̄)ut , they are in fair agreement with the
incompressible data. Applied at the recycling station and the
inlet, the scaling ofui8 ( i 51,2,3 corresponding tou8,v8,w8)
by A( r̄w / r̄)ut leads to

~ui8! i5vut
vrw

A~ r̄ !r

~ r̄ ! i
~ui8!r , ~27!

for (z1) r5(z1) i in the inner layer and (h) r5(h) i in the
outer layer. The difficulty is how to rescale the temperature,
density, and pressure fluctuations.

To a first-order approximation, the state equation yields

p8

P
5

T8

T
1

r8

r̄
. ~28!

In most cases,p8/P is very small and can be assumed to be
negligible, which gives

r8

r̄
52

T8

T
. ~29!

This approximation is good for turbulent boundary layers
only. Thus, only the temperature fluctuations need to be res-
caled. The strong Reynolds analogy~SRA! serves to predict

the relation between the temperature fluctuations and the
streamwise velocity fluctuations and is given by

Trms

T
5~g21!Me

2 urms

U
,

Ru8T85
u8T8

urmsTrms
521, ~30!

whereTrms andurms are, respectively, the root mean squared
temperature and velocity fluctuations. From the SRA, we can
predictT8 as

T852~g21!Me
2 u8

U
T. ~31!

The SRA is not well supported by simulation data even at
low Mach numbers, see Refs. 6 and 27. In contrast, experi-
mental data shows that SRA is well supported for low to
moderate Mach numbers, see Refs. 30–34. We can avoid the
uncertainty of this assumption in the same way as we deal
with the relationship between the mean temperature and the
mean streamwise velocity. We assume the following rela-
tions which are more general than the SRA,

Trms

T
5 f amp

urms

U
,

T8~ t !

Trms
5c

u8~ t1 f phase!

urms
, ~32!

wheret denotes time,c is equal to11 ~or 21!, whereu8 and
T8 are positively~or negatively! correlated,f amp and f phase

are functions ofz1 in the inner layer andh in the outer layer,
and they are not functions of the streamwise location. Apply-
ing Eq. ~32! to the recycling station and the inlet, we can
deduce

~T8~ t !! i5
~u8~ t1 f phase!! i

~u8~ t1 f phase!!r

~U !r

~U ! i

~T! i

~T!r
~T8~ t !!r

5vut
vrw

A~ r̄ !r

~ r̄ ! i

~U !r

~U ! i

~T! i

~T!r
~T8~ t !!r . ~33!

Approaching the wall, (U) r /(U) i becomes a 0/0 type limit
and can be evaluated according to L’Hospital rule. We thus
have the following rescaling of the temperature fluctuations
at the wall:

~Tw8 ~ t !! i5
vrw

vnw

vut

A~ r̄ !r

~ r̄ ! i

~Tw! i

~Tw!r
~Tw8 ~ t !!r . ~34!

C. Rescaling parameters

To compute rescaling parametersv’s, we needut , nw ,
D ~in our case,u! andrw at both the recycling station and the
inlet. At the recycling station, these quantities are known. At
the inlet, (nw) i and (rw) i can be found directly from the
mean wall temperature (Tw) i , u can be specified andut is
given as a function ofu using the Karman–Schoenherr equa-
tion under van Driest II transformation, see Ref. 23.

D. Implementation

In the rescaling of the mean streamwise velocity, three
sublayers are distinguished. In the rescaling of other quanti-
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ties, the boundary layer is divided into the inner sublayer and
the outer sublayer. The composite profile of a quantity over
the entire boundary layer is formed by a weighted combina-
tion of the profiles for all sublayers. For example, the stream-
wise velocity is formed as

u5$Uviscb1~z!1U logb2~z!1Uwakeb3~z!%

1$uinner8 @12b3~z!#1uouter8 b3~z!%, ~35!

whereUvisc, U log , andUwake represent the mean profiles in
the viscous sublayer, the logarithmic region and the wake
region respectively,uinner8 anduouter8 in turn represent the fluc-
tuation profiles in the inner layer and the outer layer, and
b1(z), b2(z), and b3(z) are weight functions. The weight
functions are constructed from hyperbolic-tangent functions
as

b1~k!5
1

2 H 12tanhFc1

k2km1

klogs2kvisc
G J , ~36!

b2~k!5
1

2 H tanhFc1

k2km1

klogs2kvisc
G2tanhFc23

k2km23

kwake2kloge
G J ,

~37!

b3~k!5
1

2 H 11tanhFc23

k2km23

kwake2kloge
G J , ~38!

wherek is the wall-normal grid index and equivalent to co-
ordinatez, c1 , andc23 are constants to adjust the steepness
of the weight functions,kvisc, klogs, kloge, andkwake are the
wall-normal indexes to distinguish different sublayers,km1

5(kvisc1klogs)/2 and km235(kloge1kwake)/2. In the simula-
tion presented in the next section, we choosekvisc, klogs,
kloge, andkwake to correspond toz155, z1530, z/d50.2,
andz/d50.5, respectively. Figure 5 shows the weight func-
tions we used in the simulation. These parameters are chosen
based on the simulation conditions during runtime. We find
that these parameters are insensitive to the small changes
around the initially chosen values.

In the mean scaling, a time average is needed to exclude
the starting transient if the flow is initialized with a crude
guess. In that case, the following formula is used:

U ~m11!5w1U ~m!1w2^u
~m11!&y , ~39!

whereU (m11) andU (m) are the time-averaged mean at time
stepm11 andm, respectively,̂ u(m11)&y is the average ofu
in the spanwise direction at time stepm11, w1 andw2 are

two weights satisfyingw1.0, w2.0, w1@w2 , and w1

1w251. Lundet al.5 let w1 be 12(Dt/t) andw2 be Dt/t,
whereDt is the computational time step andt the character-
istic time scale of the averaging interval. From formula~39!,
we know

U ~m11!5w1
m11U ~0!1w2~w1

m^u~1!&y1w1
m21^u~2!&y

1¯1^u~m11!&y!. ~40!

At the beginning of the simulation, becausem is small and
w1@w2 , U (0) takes a very large fraction ofU (m11), as seen
from Eq.~40!. Thus, we provide a smooth mean profile from
TDNS asU (0) instead of usinĝ u(0)&y . We choosew1 so
that when the mean information has propagated from the
inlet to the recycling station,m is large enough forU (0) to
take almost no effect inU (m11). After the transient, we in-
creasew1 to run forN steps in order to stabilize the statistics
and then switch to a usual running average, i.e.,w151
2@1/(N1m2m0)# and w251/(N1m2m0), where m0 is
the step at which the running average begins. IfU (0) is very
crude andw1 is not well attuned, the temporal starting tran-
sient can be very long before the right spatial behavior builds
up over the boundary layer. Ifw1 is too small, a good mean
profile U (m11) can not be achieved due to insufficiency of
effective samples for averaging, which leads to wrong scal-
ing and thus wrong boundary layer mean behavior.

If the initial flow field is crude, the rescaling parameters
ut andu that are specified at the inlet can largely differ from
those calculated at the recycling station initially. The mean
streamwise velocity rescaled by the law-of-the-wall thus has
a large shift from the one rescaled by the-law-of-the-wake.
When the mean profile of the streamwise velocity is formed
by the weight functions, there appears an undershoot or over-
shoot in the profile. We call the start of a simulation with the
undershoot or overshoot a jump start. It takes a long time to
smooth the undershoot or overshoot and build up the right
mean behavior over the whole boundary layer. A trick to
avoid this is to let the initialut andu at the recycling station
be the same as those specified at the inlet, and then use the
averaging formula~39! to bring their right values at the re-
cycling station slowly in the temporal transient of the simu-
lation. In this way, the simulation starts smoothly. After the
initial transient, the averaging formula~39! is discarded and
ut andu at the recycling station are calculated directly from
the mean profile.

IV. TESTS

In this section, we simulate a supersonic turbulent
boundary layer under zero pressure gradient. The perfect gas
assumption is used and the specific heats,cp and cv , are
assumed constants. The dynamic viscositym is assumed to
obey a power law. We first present the comparisons between
TDNS and ETDNS. We check the conditions for the validity
of TDNS and point out the improvement over TDNS by
ETDNS. We then present the results of a spatial DNS
~SDNS! in which the rescaling method is implemented. The
numerical results are compared with theoretical ones and
those from TDNS and ETDNS.

FIG. 5. Weight functions used in the simulation.
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We run ETDNS until a stationary station is reached and
then take the final flow field as the initial condition to run
TDNS and ETDNS. Therefore, the initial flow parameters
and numerical set-up are exactly the same. These are given
in Table I. To save run time, a coarse spanwise mesh is used
for the comparisons between TDNS and ETDNS in Sec.
IV A. The initial flow field for SDNS is from a quasistation-
ary TDNS with a fine spanwise mesh. The initial flow pa-
rameters and numerical set-up of SDNS are given in Table II.
We emphasize that all results in Sec. IV B for the rescaling
method are obtained with the fine spanwise mesh. For the
resolution and domain assessments, we refer to Ref. 28.

The computational codes for TDNS, ETDNS, and SDNS
are essentially the same and are described in Ref. 28. These
employ a third-order shock-capturing weighted essentially
nonoscillatory ~WENO! scheme for the inviscid fluxes, a
fourth-order central-finite-difference scheme for viscous
fluxes and a second, order accurate data-parallel lower-upper
~DPLU! relaxation method for the time advancement. The
extra forcing terms for ETDNS are treated explicitly. The
marching scheme in ETDNS that is used to approximate de-
rivatives on the slow streamwise scale is a second-order
backward finite difference scheme. No-slip and no-
penetration conditions for velocity and an adiabatic condition
for temperature are used at the lower wall. Symmetric
boundary conditions are used at the top domain boundary. In
SDNS, we generate the inflow using the rescaling method.
The location of the recycling station is given in Table II. We
treat the outflow by placing a sponge layer2,3 before the out-
flow boundary and applying symmetric boundary conditions
at the outflow boundary. In the sponge layer, a vector quan-
tity Z52s(x)(U2U0) is added to the right-hand side of the

governing equations, whereU stands for the vector of con-
servative variables andU0 a given steady basic flow. Be-
cause the recycling station is close to the sponge layer, we let
U0 be the mean flow at the recycling station to reduce the
artificial effects from the outflow treatment on the recycling
station. Following Israeliet al.,35 the Newtonian cooling
function s(x) is chosen to be

s~x!5A~N11!~N12!
~x2xs!

N~Lx2x!

~Lx2xs!
N12 , ~41!

whereA andN are two adjustable parameters chosen to be 4
and 3, respectively,xs is the streamwise location where the
sponge layer starts given in Table II, andLx is the stream-
wise length of the computational domain.

A. Comparisons between TDNS and ETDNS

The purpose of this section is to show that TDNS can be
used to generate supersonic turbulent boundary data as long
as the specific conditions for its validity, which are listed in
the second to last paragraph of Sec. II B, are satisfied. Here,
we use the results from ETDNS to test the validity of TDNS.

1. Mean behavior

The theoretical analysis in Sec. II A shows that TDNS
leads to nonstationary flow. However, in practice the flow
evolves slowly. Thus, if the time interval for averaging is
much shorter than the time scale of the flow evolution, then
the flow can be considered quasistationary and time averag-
ing can be used to obtain statistics. We verify that the TDNS
flow evolution is slow by monitoring the temporal evolution
of the friction velocity, momentum thickness and displace-

TABLE I. Parameters for TDNS and ETDNS. Reu0
5reUeu0 /me . dstationis the distance between two neighboring

stations in ETDNS. Other symbols take their usual meaning.

Initial flow conditions Me Te ~K! re ~kg/m3! 103d0 ~m! 103d0* ~m! 104u0 ~m!

4 5000 0.5 6.96 2.87 3.94
Reu0

ut0 ~m/s! 103Cf 0

11363 243 0.96

Numerical set-up Lx Ly Lz Nx Ny Nz

6.10d0 1.52d0 10.30d0 384 128 128
Dx1 Dy1 Dz1 dstation

12.7 9.5 0.11–535 2Lx

TABLE II. Parameters for SDNS.xr is the streamwise location of the recycling station.xs is the streamwise
location where the sponge layer starts.

Initial flow conditions Me Te ~K! re ~kg/m3! 103d0 ~m! 103d0* ~m! 104u0 ~m!

4 5000 0.5 7.44 3.28 4.11
Reu0

ut0 ~m/s! 103Cf 0

11742 255 1.01

Numerical set-up Lx Ly Lz Nx Ny Nz

5.71d0 1.43d0 9.64d0 384 256 128
Dx1 Dy1 Dz1 xr xs

12.7 4.8 0.12–565 4.6d0 5.0d0
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ment thickness and verifying that the change in these quan-
tities is negligible in the time period where the statistics are
gathered. In this case, we consider that the variation of these
quantities in 3d0* /ut0 is nearly negligible, whered0* andut

are the displacement thickness and friction velocity at the
beginning of the simulation.

Figure 6 shows the time history of friction velocity and
momentum thickness for TDNS and ETDNS. In TDNS, the
evolution of the skin friction is slow. The long-time temporal
evolution of the friction velocity is not obvious in Fig. 6.
However, we may expect thatut decreases as we continue
the simulation much longer. The boundary layer thickening
with time in TDNS indicates that the use of genuine periodic
boundary conditions does lead to the temporal behavior of
the mean flow. In ETDNS, as expected, this temporal evolu-
tion is prohibited by the forcing, and the skin friction and the
integral thickness evolve little with time.

Estimating the time scale of the boundary layer growth
as

tg5S 1

d*
dd*

dt D 21

, ~42!

leads totg525 (d0* /ut0) in TDNS for the duration shown in
Fig. 6. We find that quasistationary statistics can be gathered
in a time-period that is one order of magnitude smaller than

FIG. 6. Temporal evolution of the friction velocity and the momentum
thickness for ETDNS~—! and TDNS~---!.

FIG. 7. Mean streamwise momentum balance in ETDNS with](ru)/]t
~—!, ^ f u& ~---!, (](ruw)/]z) ~–•–!, and](txz)/]z ~–•–!.

FIG. 8. Mean streamwise velocity and temperature~a! comparison between
TDNS and ETDNS;~b! comparison with Walz’s equation forr 50.9.
ETDNS: —, TDNS: ---, and Walz’s equation: –•–.
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the boundary later growth time. The total sampling time for
the current TDNS is about 3 (d0* /ut0). The boundary layer
in TDNS can be considered quasisteady if the flow adjusts to
its local conditions much faster than the boundary layer
growth. The adjusting time is of the order of the large-eddy-
turn-over time d0 /Ue , which is much smaller than the
growth time. Thus, the conditions for the validity of TDNS
are satisfied in the present simulation. Further comparisons
between TDNS and ETDNS also validate the use of TDNS.

In ETDNS, the mean streamwise momentum balance is

]^ru&
]t

52
]^ruw&

]z
1

]^txz&
]z

1^ f u&, ~43!

where the terms at the right-hand side represent advection,
diffusion, and forcing. Figure 7 shows these terms normal-
ized with the freestream momentumreUe and the large-eddy
turn-over timed/Ue . From Fig. 7 we see that the time de-
rivative of the mean streamwise momentum remains small in
the boundary layer, with a maximum magnitude of less than
0.5%. Figure 7 also shows that the advection and diffusion
are dominant in the viscous sublayer and they nearly balance
each other. Outside the viscous sublayer, the diffusion is very
small, in turn the forcing and advection terms balance each
other.

The profiles of the mean streamwise velocity and the
mean temperature are compared in Fig. 8~a!. A mean quan-
tity here is obtained by averaging in both space and time.
The difference between TDNS and ETDNS is small for each
of these quantities. Figure 8~b! plots the mean temperature vs
the mean streamwise velocity and compare the resulting pro-
files with the one by Walz’s equation. It can be seen that

Walz’s equation predicts very well the relationship between
the mean streamwise velocity and the mean temperature for
the conditions chosen, and it can be used instead in the
rescaling method for zero-pressure-gradient supersonic tur-
bulent boundary layers.

2. Turbulence statistics

The Reynolds stresses and the Reynolds heat fluxes are
compared between TDNS and ETDNS in Fig. 9. Primes are
used to denote fluctuations with respect to the Reynolds-
averaged mean. Due to the statistical symmetry in the span-
wise direction, the Reynolds shear stressesru8v8 andrv8w8
and the Reynolds heat fluxrv8T8 converge to zero, and they
are not shown in Fig. 9. To observe the different temporal
behavior of these quantities, we nondimensionalize them by
the freestream parameters, i.e.,re , Ue , andTe . As seen in
Fig. 9, the magnitude of each Reynolds stress component in
TDNS is slightly smaller than the corresponding one in
ETDNS. The statistics resulting from long-time-averaging a
slowly decaying flow would have smaller amplitude than
those of ETDNS. This is why the magnitudes of the TDNS
statistics are slightly smaller than those for the ETDNS in
Fig. 9. However, the difference is very small, and we con-
sider the agreement to be good enough to draw our conclu-
sion of the validity of TDNS. Scaled with wall parameters,
i.e., rw , ut , andTt (Tt5Tw for an adiabatic wall andTt

ªPrwqw /rwCpwut for an isothermal wall, wherePrw is the
Prandtl number andqw the heat diffusion flux at the wall!,
we can still observe the similar difference for these quanti-
ties, which may indicate that the turbulence in TDNS evolves

FIG. 9. Comparison between TDNS
and ETDNS for ~a!–~b! Reynolds
stresses,~c!–~d! Reynolds heat fluxes.
Quantities in~a! and~c! are nondimen-
sionalized by the free stream param-
eters. Quantities in~b! and~d! are non-
dimensionalized by the wall
parameters ETDNS: — and TDNS:
---.
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in a non-self-similar way. The same phenomena are also
found for root mean squared fluctuating velocities, tempera-
ture and total temperature. Nevertheless, the difference in the
current and later comparisons between TDNS and ETDNS is
very small, which means the use of TDNS is valid.

The SRA predicts the relation between the temperature
fluctuations and the streamwise velocity fluctuations as in
Eq. ~30!. From the SRA, we knowTrmsU/(g21)Me

2Turms

51 and 2Ru8T851. Figure 10 plots TrmsU/(g
21)Me

2Turms and2Ru8T8 vs z/d and indicates that the SRA
is not satisfied in the bulk of the boundary layer simulated by
both TDNS and ETDNS.

After assuming homogeneity of turbulence in the
streamwise and spanwise directions, the turbulent kinetic en-
ergy ~TKE! budget equation reads

]

]t
~^r&k̃!1w̃

]

]z
~^r&k̃!5P1T1P t1Pd1D2F1Vc ,

~44!

where a quantity with a tilde is a mass-averaged mean. The
terms in Eq.~44! follow the usual interpretations. Figure 11
gives the comparison of the TKE budget nondimensionalized
by wall parameters between TDNS and ETDNS. Again, a
small difference exists and the reason for the difference is the
same as in Fig. 9.

B. SDNS

The rescaling method results in a spatial boundary layer.
Figure 12 shows the spatial evolution of the boundary layer
displacement thicknessd* , momentum thicknessu, friction
velocity ut and friction coefficientCf . The rescaling method
builds up the spatial boundary layer from the initial periodic
flow field after the temporal transient is passed. The solid
circles represent the time-averaged spatial distributions of
these quantities for the spatial boundary layer in equilibrium.
The time average period is 1.1d0 /ut0 . As seen from Fig. 13,
the specified inlet friction velocity is about 8% larger than
the mean friction velocity of the initial flow field while the
momentum thickness is the same, which makes the described
trick ~Sec. III D! necessary to avoid a jump start. Figure 13
shows the spatial evolution of the shape factor,H, in com-
parison with Coles empirical correlation36 and experimental
data.37 For this figure only,d* andu are computed using the
incompressible formulas and Red25rdudu/mw , wheremw is
the viscosity at the wall. Figure 13 shows that the SDNS data
are within the experimental uncertainty. Experiments show
that the shape factor is not constant, especially at low Rey-
nolds numbers.30 The accuracy of the shape factor decay is
difficult to assess given the small range of Red2 that we con-
sidered.

There are no experimental results at the present condi-
tions, however, the maximum error based on the van Driest
II theory in the skin friction is 7% for the SDNS data, as we
show below. Hopkins and Inouye23 presented a survey com-
paring different theories to predict the turbulent skin friction
in supersonic and hypersonic boundary layers. They found
that the van Driest II theory gives the best prediction. This
prediction is widely accepted by experimentalists in super-
sonics and hypersonics. Below, we summarize this theory
and show that the SDNS data is in very good agreement with
this well-established theory.

Sivells and Payne formula23 under van Driest II transfor-
mation reads

FIG. 10. ~a! Amplitude and ~b! phase relationship between temperature
fluctuations and streamwise velocity fluctuations. ETDNS: — and TDNS:
---.

FIG. 11. Comparison of the TKE budget in TDNS and ETDNS. ETDNS: —
and TDNS: ---.
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FcCf5
0.088@ lg~Fx Rex!22.3686#

@ lg~Fx Rex!21.5#3 , ~45!

Fu Reu5
0.044Fx Rex

@ lg~Fx Rex!21.5#2 , ~46!

where Cf is the local skin friction coefficient, Rex

(5reUex/me) is Reynolds number based on distance to the
virtual origin of the boundary layer, Reu is Reynolds number
based on the momentum thickness as defined in Table I. For
a given Reu , we compute Cf from the estimation by
Karman–Schoenherr equation under van Driest II
transformation.23 After Cf is calculated, we compute Rex

from Eq. ~45!. Karman–Schoenherr equation under van
Driest II transformation reads

1

FcCf
517.08@ lg~Fu Reu!#2125.11 lg~Fu Reu!16.012.

~47!

Fc , Fu , and Fx are van Driest II transformation functions
computed as

Fc5
0.2rM e

2

~sin21 a1sin21 b!2 , ~48!

Fu5
me

mw
, ~49!

Fx5
Fu

Fc
, ~50!

wherer is recovery factor anda andb are calculated by

a5
2A22B

A4A21B2
, ~51!

FIG. 12. Distributions of the displacement thicknessd* , momentum thicknessu, friction velocity ut , and friction coefficientCf along the streamwise
direction. SDNS:d; initial periodic flow field: ---; and formulas from least square~LS! minimization: —. The variables are nondimensionalized by the initial
ones for the SDNS.

FIG. 13. Variation of shape factorH with Reynolds number in comparison
with experimental data~Ref. 12! and the empirical correlation of Coles~Ref.
6!. Here, the variables are computed using the incompressible formulas.
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b5
B

A4A21B2
, ~52!

with

A5A0.2rM e
2

F
, ~53!

B5
110.2rM e

22F

F
, ~54!

F5
Tw

Te
. ~55!

Figure 14 shows that the streamwise evolution of Reu from
the simulation is in excellent agreement with that one given
by Eqs.~45! and ~47!. Knowing ut , we calculate Rex at the
inlet from Eq.~45! and obtain data correspondence in SDNS
between Reu and Rex . We then use the least square~LS!
minimization to produce a formula similar to Eq.~46!. The
solid line in Fig. 14 represents the plot from the LS minimi-
zation. Its slope matches very well the slope estimated by
Eq. ~46!. For comparison, we have shifted the virtual origin
of the boundary layer to the boundary layer inlet. The rela-
tive magnitude difference between the LS results and the
predictions given by Eq.~46! is less than 2% for the LS
fitted data ~less than 5% for the data without LS fit!. In
Fig. 12, the LS results foru distribution are given by a solid
line.

Figure 15 compares the simulated local skin frictionCf

in terms of Reu with the estimation by Eq.~47!. The dashed–
dotted line represents the estimation, solid circles denote

time-averaged values from the spatial simulation. The solid
line represents the results of the LS minimization which uses
SDNS data to produce a formula similar to Eq.~47!. We
observe that the result from the simulation is in good agree-
ment with the estimation. The relative magnitude difference
between the LS results and the predictions given by Eq.~47!
is about 3.3% for the LS fitted data~less than 7% for the data
without LS fit!.

Figure 16~a! shows the mean streamwise velocity and
the mean temperature, scaled by the freestream parameters,
at three different streamwise stations marked as~1!, ~2!, and
~3! in Fig. 4 which, respectively, correspond tox150.3d0 ,
x252.4d0 , and x354.5d0 . Because the evolution of the
mean flow is very small due to the small streamwise extent,
little difference is observed. Figure 16~b! plots the relation-
ship between the mean streamwise velocity and the mean
temperature at these stations. It can be seen that the relation-
ship is independent of the streamwise location, which veri-
fies the assumption that we made in the rescaling method.

FIG. 14. Distribution of Reu along the streamwise direction. SDNS:d;
estimation by Eqs.~45! and ~47!: –•–; and formula from least square~LS!
minimization: —.

FIG. 15. Distribution of the local skin frictionCf in terms of Reu . SDNS:
d; Eq. ~47!: –•–; and formula from LS minimization: —.

FIG. 16. Mean streamwise velocity and temperature~a! distributions,~b!
comparison with Walz’s equation forr 50.9. Station 1: –•–; Station 2: ---;
Station 3: —; and Walz’s equation: –•–.
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For this zero-pressure-gradient boundary layer, Walz’s equa-
tion can describe the relationship very well.

Figure 17~a! shows the mean streamwise velocity pro-
files under the transformation given by Eq.~8! at the three
stations. The transformed velocity is scaled byut , and the
wall-normal coordinate is nondimensionalized by the wall
units. Figure 17~a! shows that the profiles collapse very well
using the transformation and scaling in the viscous region
(z1,5), and they satisfy the theoretical linear relationship
in the viscous region. Figure 17~b! shows the van Driest
transformed mean streamwise velocity profiles scaled with
ut at the three stations. Results from TDNS and ETDNS are
also included. The wall-normal coordinate is also nondimen-
sionalized using wall units. Figure 17~b! shows that the pro-
files collapse very well using the transformation and scaling
in the logarithmic region (30,z1,200 in our case!, and
they satisfy the theoretical logarithmic law. Near the bound-
ary layer edge, the mean streamwise velocity profiles from
SDNS, TDNS, and ETDNS do not collapse using the above
transformation. However, Fig. 17~c! shows that the data col-
lapse when we use the transformation given by Eq.~18! with
the wall coordinate scaled by the momentum thickness. In
fact, Eq. ~18! gives the van Driest transformation on the
mean streamwise velocity defect.

Figure 18 shows the profiles of Reynolds stresses and
Reynolds heat fluxes at the three stations. They are obtained
by averaging scaled Reynolds stresses and Reynolds heat
fluxes in time. The wiggles on the profiles are due to the
insufficiency of averaging samples. In Figs. 18~a! and 18~c!,
the freestream parameters are to nondimensionalize the vari-
ables. In Figs. 18~b! and 18~d!, the wall parameters are used
instead. We may expect that the spatial evolution of a Rey-
nolds stress or a Reynolds heat flux from Station 1 to Station

FIG. 17. Transformed mean streamwise velocity using~a! Eq. ~8!, ~b! Eq.
~14! and ~c! Eq. ~18!. Station 1: –•–; Station 2: ---; Station 3: —; TDNS
station:3; and the fourth station of ETDNS:s.

FIG. 18. Comparisons among Stations
1, 2, and 3 for ~a!–~b! Reynolds
stresses,~c!–~d! Reynolds heat fluxes.
Quantities in~a! and~c! are nondimen-
sionalized by the free stream param-
eters. Quantities in~b! and~d! are non-
dimensionalized by the wall
parameters. Station~1!: –•–; Station
~2!: ---; Station~3!: —.
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3 is small because the three stations are close. However,
Figs. 18~a! and 18~c! show that the difference among the
three stations is quite apparent. This may originate from in-
sufficiency averaging samples. When scaled by wall param-
eters, the difference becomes much smaller, as indicated by
Figs. 18~b! and 18~d!.

Figure 19 plotsTrmsU/(g21)Me
2Turms and 2Ru8T8 vs

z/d at the three stations. In Fig. 19, we observe that assum-
ing a streamwise-location-independent relation between the
temperature fluctuations and the streamwise velocity fluctua-
tions, as in Eq.~32!, is a good assumption. The rigorous SRA
is not satisfied in the bulk of the boundary layer.

V. CONCLUSIONS

The use of genuine periodic boundary conditions in a
temporal simulation neglects the streamwise inhomogeneity
of the boundary layer and thus results in evolving mean flow

and decaying turbulence. However, the usage is valid pro-
vided that the turbulence is quasisteady and sustains for suf-
ficient time to gather statistics without apparent boundary
layer growth. We find that good quasistationary flow statis-
tics can be obtained if the sampling time is one order of
magnitude smaller than the characteristic flow-evolution
time. The extended temporal approach adds forcing to the
governing equations to account for the streamwise inhomo-
geneity and can achieve a statistically stationary mean flow
and turbulence. The forcing is constructed from available
information of flow evolution and noa priori assumptions
about the flow are needed. The marching process in the ex-
tended approach allows the simulation of a series of bound-
ary layer stations. The data from the simulations with genu-
ine periodic boundary conditions are in good agreement with
those obtained from the extended temporal simulations,
which shows the validity of the use of genuine periodic
boundary conditions.

The rescaling method proposed in this paper is designed
for the spatial simulation of compressible turbulent boundary
layers. The main assumptions behind the method are that the
compressibility effects reduce to density variation effects and
that general temperature–velocity relationships exist in the
boundary layer. Based on similarity laws, the method res-
cales the flow field at a recycling station and then reintro-
duces the rescaled flow field to the inlet. The data show that
the method results in a spatial simulation which generates its
own inflow with little transient adjustment behind the inlet.
The simulation is carried out over a zero-pressure-gradient
flat plate, but the method may be extended to cases with
pressure gradient and/or geometric change because the
method does not assume any specific forms of similarity
laws and temperature–velocity relationships. As pointed out
by Lund et al.5 in their modified Spalart method, when the
inlet is under a pressure distribution in equilibrium, the re-
quired changes in their method as well as ours involve only
the computation of the friction velocity at the inlet and the
vertical velocity distribution at the upper boundary. The test
simulation shows good agreement with the theory.

Realistic turbulence inflow is desired for a boundary
layer simulation, but it is not achievable unless a forced tran-
sition is used, which can be very costly for controlled bound-
ary layer conditions. The proposed rescaling technique is a
good alternative in terms of accuracy and efficiency. We
should also mention that under certain conditions, air reac-
tions take place in the boundary layer.28,38 Currently, there
are no rescaling techniques to approximate the inflow. Thus,
understanding under what limiting conditions TDNS can be
considered is useful.
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