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Abstract. An a priori study of subgrid-scale (SGS) models for the unclosed terms in the energy equation
is carried out using the flow field obtained from the direct simulation of homogeneous isotropic turbulence.
Scale-similar models involve multiple filtering operations to identify the smallest resolved scales that have
been shown to be the most active in the interaction with the unresolved SGSs. In the present study these
models are found to give more accurate prediction of the SGS stresses and heat fluxes than eddy-viscosity
and eddy-diffusivity models, as well as improved predictions of the SGS turbulent diffusion, SGS viscous
dissipation, and SGS viscous diffusion.

1. Introduction

Large-eddy simulation (LES) is a technique intermediate between the direct numerical simulation (DNS) of
turbulent flows and the solution of the Reynolds-averaged equations. In LES the contribution of the large,
energy-carrying structures to momentum and energy transfer is computed exactly, and only the effect of
the smallest scales of turbulence is modeled. Since the small scales tend to be more homogeneous and

? The authors gratefully acknowledge the support from the Air Force Office of Scientific Research, under Grant Nos. AF/F49620-98-
1-0035 (MPM and GVC) and AF/F49620-97-1-0244 (UP), monitored by D.L. Sakell. This work was also sponsored by the Army High
Performance Computing Research Center under the auspices of the Department of the Army, Army Research Laboratory cooperative
agreement number DAAH04-95-2-0003/contract number DAAH04-95-C-0008, the content of which does not necessarily reflect the
position or the policy of the government, and no official endorsement should be inferred. A portion of the computer time was provided
by the University of Minnesota Supercomputing Institute.

361



362 M.P. Martı́n, U. Piomelli, and G.V. Candler

universal, and less affected by the boundary conditions, than the large ones, there is hope that their models
can be simpler and require fewer adjustments when applied to different flows than similar models for the
Reynolds-averaged Navier–Stokes equations.

While a substantial amount of research has been carried out into modeling for the LES of incompressible
flows, applications to compressible flows have been significantly fewer, due to the increased complexity
introduced by the need to solve an energy equation, which introduces extra unclosed terms in addition to the
subgrid-scale (SGS) stresses that must be modeled in incompressible flows. Furthermore, the form of the
unclosed terms depends on the energy equation chosen (internal or total energy, total energy of the resolved
field, or enthalpy).

Early applications of LES to compressible flows used a transport equation for the internal energy per unit
massε (Moin et al., 1991; El-Hadyet al., 1994) or for the enthalpy per unit massh (Spezialeet al., 1988;
Erlebacheret al., 1992). In these equations the SGS heat flux was modeled in a manner similar to that used
for the SGS stresses, while two additional terms, the SGS pressure-dilatationΠdil and the SGS contribution
to the viscous dissipationεv, were neglected.

Vremanet al. (1995a,b) performeda priori tests using DNS data obtained from the calculation of a
mixing layer at Mach numbers from 0.2 to 0.6. They found that the SGS pressure-dilatationπdil and SGS
viscous dissipationεv are of the same order as the divergence of the SGS heat fluxQj , and that modeling
εv improves the results, especially at moderate or high Mach numbers. They also proposed the use of a
transport equation for the total energy of the filtered field, rather than either the enthalpy or the internal
energy equations; the same unclosed terms that appear in the internal energy and enthalpy equations are also
present in this equation.

Very few calculations have been carried out using the transport equation for the total energy, despite the
desirable feature that it is a conserved quantity, and that all the SGS terms in this equation can be cast in
conservative form. This equation has a different set of unclosed terms, whose modeling is not very advanced
yet. Normand and Lesieur (1992) performed calculations of a transitional boundary layer, and modeled
only the SGS heat flux, neglecting all the other terms. Knightet al. (1998) performed the LES of isotropic
homogeneous turbulence on unstructured grids and compared the results obtained with the Smagorinsky
(1963) model with those obtained when the energy dissipation was provided only by the dissipation inherent
in the numerical algorithm. They modeled the SGS heat flux and an SGS turbulent diffusion term, and
neglected the SGS viscous diffusion. Comte and Lesieur (1998) proposed the use of an eddy-diffusivity
model for the sum of the SGS heat flux and SGS turbulent diffusion, neglecting the SGS viscous diffusion.

In this paper the flow field obtained from a DNS of homogeneous isotropic turbulence is used to compute
the terms in the energy equations, and evaluate eddy-viscosity and scale-similar models for their parametriza-
tion. We place emphasis on the total energy equation, both because of the lack of previous studies in the terms
that appear in it, and because of the desirability of solving a transport equation for a conserved quantity. In
the remainder of the paper the governing equations are presented and the unclosed terms are defined. The
DNS database used for thea priori tests is described. Finally, several models for the unclosed terms are
presented and tested.

2. Governing Equations

To obtain the equations governing the motion of the resolved eddies, we must separate the large from the
small scales. LES is based on the definition of a filtering operation: a resolved variable, denoted by an
overbar, is defined as (Leonard, 1974)

f (x) =
∫
D

f (x′)G(x, x′; ∆)dx′, (1)

whereD is the entire domain,G is the filter function, and∆ is the filter-width associated with the wavelength
of the smallest scale retained by the filtering operation. Thus, the filter function determines the size and
structure of the small scales.

In compressible flows it is convenient to use Favre-filtering (Favre, 1965a,b) to avoid the introduction
of SGS terms in the equation of conservation of mass. A Favre-filtered variable is defined asf̃ = ρf/ρ. In
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addition to the mass and momentum equations, one can choose solving an equation for the internal energy,
enthalpy, or total energy. Applying the Favre-filtering operation, we obtain the resolved transport equations

∂ρ

∂t
+

∂

∂xj

(
ρ ũj

)
= 0, (2)

∂ρ ũi
∂t

+
∂

∂xj

(
ρ ũiũj + pδij − σ̃ji

)
= −∂τji

∂xj
, (3)

∂(ρ ε̃ )
∂t

+
∂

∂xj

(
ρ ũj ε̃

)
+
∂q̃j
∂xj

+ pS̃kk − σ̃jiS̃ij = −Cv
∂Qj
∂xj

− Πdil + εv, (4)

∂(ρ h̃)
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∂xj

(
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∂q̃j
∂xj
− ∂p

∂t
− ũj

∂p

∂xj
− σ̃jiS̃ij = −Cv

∂Qj
∂xj

− Πdil + εv, (5)

∂

∂t
(ρ Ẽ) +

∂

∂xj

[
(ρ Ẽ + p)ũj + q̃j − σ̃ij ũi

]
= − ∂

∂xj

(
γCvQj + 1

2Jj −Dj
)
. (6)

Hereρ is the density,uj is the velocity in thexj direction,p is the pressure,ε = cvT is the internal energy
per unit mass,T is the temperature;h = ε + p/ρ is the enthalpy per unit mass;E = ε + uiui/2 is the total
energy per unit mass, and the diffusive fluxes are given by

σ̃ij = 2µ̃S̃ij − 2
3µ̃δijS̃kk, q̃j = −k̃ ∂T̃

∂xj
, (7)

whereSij = 1
2(∂ui/∂xi + ∂uj/∂xi) is the strain rate tensor, and̃µ and k̃ are the viscosity and thermal

conductivity corresponding to the filtered temperatureT̃ .
The effect of the SGSs appears on the right-hand side of the governing equations through the SGS stresses

τij ; SGS heat fluxQj ; SGS pressure-dilatationΠdil ; SGS viscous dissipationεv; SGS turbulent diffusion
∂Jj/∂xj ; and SGS viscous diffusion∂Dj/∂xj . These quantities are defined as

τij = ρ (ũiuj − ũiũj), (8)

Qj = ρ
(
ũjT − ũjT̃

)
, (9)

Πdil = pSkk − pS̃kk, (10)

εv = σjiSij − σ̃jiS̃ij , (11)

Jj = ρ
(
ũjukuk − ũj ũkuk

)
, (12)

Dj = σijui − σ̃ij ũi. (13)

The equation of state has been used to express pressure-gradient and pressure-diffusion correlations in terms
of Qj andΠdil . It is also assumed thatµ(T )Sij ' µ(T̃ )S̃ij , and that an equivalent equality involving the
thermal conductivity applies. Vremanet al.(1995b) performeda priori tests using DNS data obtained from
the calculation of a mixing layer at Mach numbers in the range 0.2–0.6, and concluded that neglecting the
nonlinearities of the diffusion terms in the momentum and energy equations is acceptable.

3. A priori Test

One method to evaluate the performance of models for LES or RANS calculations is thea priori test, in
which the velocity fields obtained from a direct simulation are filtered to yield the exact SGS terms, and
the filtered quantities are used to assess the accuracy of the parametrization. The database used in this study
was obtained from the calculation of homogeneous isotropic turbulence decay.

The Navier–Stokes equations were integrated in time using a fourth-order Runge–Kutta method.
The spatial derivatives were computed using an eighth-order accurate central finite-difference scheme.
The results have been validated by comparison with the DNS data of Mart´ın and Candler (1998, 1999). The
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Figure 1. Energy spectrum;¦ , location of the filter-widths used in thea priori test; k−5/3 slope; , DNS.q2 = uiui,
andη is the Kolmogorov length scale.

simulations were performed on grids with 2563 points. The computational domain is a periodic box with
length 2π in each dimension. The fluctuating fields were initialized as in Ristorcelli and Blaisdell (1997).

The calculation was performed at a Reynolds numberReλ = u′λ/ν = 50, whereλ = 〈u2〉1/2/
〈(∂u/∂x)2〉1/2 is the Taylor microscale andu′ = (uiui)1/2 is the turbulence intensity, and at a turbulent
Mach numberMt = u′/a = 0.52, wherea is the speed of sound. The initial flow field is allowed to evolve
for four dimensionless time unitsτt = λ/u′, so that the energy spectrum may develop an inertial range that
decays ask−5/3, wherek is the nondimensional wave number.

The filtered fields were obtained using a top-hat filter, which is defined in one dimension as

f i =
1

2n

fi−n/2 + 2
i+n/2−1∑
i−n/2+1

fi + fi+n/2

 . (14)

Various filter-widths∆ = n∆ (where∆ is the grid size andn = 4, 8, 16, and 32) were used. Note that the
grid resolution is high enough thatn = 2 would correspond to a DNS. The location of the various filter
cutoffs along the energy spectrum att/τt = 6.5 are shown in Figure 1; they cover the decaying range of the
spectrum (n = 4), the inertial range (n = 8 and 16), and the energy-containing range (n = 32). With the
filters used, respectively, 5%, 15%, 40%, and 70% of the total turbulent kinetic energy resides in the SGSs.
The two intermediate values are representative of actual LES calculations, in which the SGS kinetic energy
is typically between 15% and 30% of the total energy. A higher percentage of SGS energy in general indicates
an under-resolved calculation. In the following, results will be shown for∆ = 8∆, except when evaluating
the effect of filter-width.

The accuracy of a model is evaluated by computing the exact termR and its model representationM
and comparing the two using the correlation coefficientC(R) and the root-mean-square (rms) amplitudes
〈(R− 〈R〉)2〉1/2 and〈(M − 〈M〉)2〉1/2. The correlation coefficient is given by

C(R) =
〈(R− 〈R〉)(M − 〈M〉)〉(

〈(R− 〈R〉)2〉〈(M − 〈M〉)2〉
)1/2

, (15)

where the brackets〈·〉 denote averaging over the computational volume. A “perfect” model would give a
correlation coefficient of 1. In the following, the quantities plotted are made nondimensional using the initial
values ofρ, u′, andλ.

4. Models for the Momentum Equation

The SGS stresses (8) are the only unclosed term that appears in the momentum equation. Various types of
models have been devised to represent the SGS stresses. Eddy-viscosity models try to reproduce the global
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exchange of energy between the resolved and unresolved stresses by mimicking the drain of energy associ-
ated with the turbulence energy cascade. Yoshizawa (1986) proposed an eddy-viscosity model for weakly
compressible turbulent flows using a multiscale direct-interaction approximation method. The anisotropic
part of the SGS stresses is parametrized using the Smagorinsky (1963) model, while the SGS energyτkk is
modeled separately:

τij −
δij
3
τkk = −C2

s2∆
2
ρ |S̃|

(
S̃ij −

δij
3
S̃kk

)
= C2

sαij , τkk = CI2ρ∆
2|S̃|2 = CIα, (16)

with Cs = 0.16,CI = 0.09, and|S̃| = (2S̃ijS̃ij)1/2.
Moin et al. (1991) proposed a modification of the eddy-viscosity model (16) in which the two model

coefficients were determined dynamically, rather than inputa priori, using the Germano identityLij =
Tij − τ̂ij (Germano, 1992), which relates the SGS stressesτij to the “resolved turbulent stresses”Lij =(

̂ρui ρuj/ρ
)
− ρ̂ui ρ̂uj/ρ̂ , and the subtest stressesTij = ρ̂ ˘̃uiuj − ρ̂ ˘̃ui ˘̃uj (where ˘̃

f = ρ̂f/ρ̂ , and the hat

represents the application of the test filterĜ of characteristic widtĥ∆ = 2∆) that appear if the filter̂G is
applied to (3). Moinet al. (1991) determined the model coefficients by substituting (16) into the Germano
identity and contracting with̃Sij . In the present paper the contraction proposed by Lilly (1992) to minimize
the error in a least-squares sense are used instead. Accordingly, the two model coefficients for the dynamic
eddy-viscosity (DEV) model will be given by

C = C2
s =
〈LijMij〉
〈MklMkl〉

, CI =
〈Lkk〉
〈β − α̂〉 , (17)

whereβij = −2∆̂
2
ρ̂ | ˘̃S|( ˘̃

Sij − δij ˘̃
Skk/3),Mij = βij − α̂ij , andβ = 2∆̂

2
ρ̂ | ˘̃S |2.

Scale-similar models are based on the assumption that the most active SGSs are those closer to the cutoff,
and that the scales with which they interact are those immediately above the cutoff wave number (Bardina
et al., 1980). Thus, scale-similar models employ multiple operations to identify the smallest resolved scales
and use the smallest “resolved” stresses to represent the SGS stresses. Although these models account for
the local energy events, they underestimate the dissipation.

Spezialeet al. (1988) proposed the addition of a scale-similar part to the eddy-viscosity model of
Yoshizawa (1986) introducing the mixed model. In this way, the eddy-viscosity contribution provides the
dissipation that is underestimated by purely scale-similar models. This mixed model was also used by
Erlebacheret al. (1992) and Zanget al. (1992), and is given by

τij −
δij
3
τkk = Csαij +Aij −

δij
3
Akk, τkk = CIα +Akk, (18)

whereAij = ρ (˜̃uiũj − ˜̃ui˜̃uj).
Erlebacheret al.(1992) tested the constant coefficient modela priori by comparing DNS and LES results

of compressible isotropic turbulence and found good agreement in the dilatational statistics of the flow, as
well as high correlation between the exact and the modeled stresses. Zanget al. (1992) compared the DNS
and LES results of isotropic turbulence with various initial ratios of compressible to total kinetic energy.
They obtained good agreement for the evolution of quantities such as compressible kinetic energy and
fluctuations of the thermodynamic variables.

Dynamic model adjustment can be also applied to the mixed model (18), to yield the dynamic mixed
model (DMM)

C =
〈LijMij〉 − 〈NijMij〉

〈MlkMlk〉
, CI =

〈Lkk −Nkk〉
〈β − α̂〉 , (19)

with Bij = ρ̂ (
˘̃˘̃ui ˘̃uj −

˘̆̃
ũi

˘̆̃
ũj), andNij = Bij − Âij .

An issue that requires some attention is the necessity to model separately the trace of the SGS stressesτkk.
Yoshizawa (1986), Moinet al. (1991), and Spezialeet al. (1988) proposed a separate model for this term.
Erlebacheret al.(1992) conjectured that, for turbulent Mach numbersMt < 0.4 this term is negligible; their
DNS of isotropic turbulence confirm this conjecture. Zanget al.(1992) confirmed these resultsa posteriori:
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they ran calculations with 0≤ CI ≤ 0.066 (the latter value is ten times higher than that predicted by the
theory) and observed little difference in the results.

Comte and Lesieur (1998) proposed incorporating this term into a modified pressureP. This leads to the
presence of an additional term in the equation of state, which takes the form

P = ρRT̃ +
3γ − 5

6
τkk; (20)

for γ = 5
3 the additional term is zero, and forγ = 7

5 it might be negligible, unlessMt is very large. This
observation can be used to explaina posteriori the insensitivity of the LES results to the value ofCI
discussed by Zanget al. (1992): the SGS stress trace can be approximately incorporated in the pressure
with no modification to the equation of state. Another factor may be that both the calculations by Erlebacher
et al. (1992) and those by Zanget al. (1992) used mixed models, in which the scale-similar part gave a
contribution to the normal SGS stresses. Thus,τkk is taken into account, at least partially, by the scale-similar
contribution.

If the mixed model is used, the trace of the SGS stresses can be parameterized without requiring a separate
term. A one-coefficient dynamic mixed model (DMM-1) would be of the form

τij = Cαij +Aij , (21)

with

C =
〈LijMij〉 − 〈NijMij〉

〈MlkMlk〉
. (22)

The models DEV (16)–(17), DMM (18)–(19), and DMM-1 (21)–(22) are evaluated in Figures 2–4.
Figure 2(a) shows that the DMM-1 model gives the highest correlation for the diagonal components of the
SGS stress tensor; Figure 2(b) shows that neither the eddy-viscosity model nor the two-coefficient mixed
model DMM predict the rms of the SGS stresses accurately. The DMM-1 model gives the most accurate
prediction among those tested.

Figure 3(a) shows the correlation coefficient for the off-diagonal components of the SGS stress. As in
incompressible flows, the eddy-viscosity model gives very poor correlation (near 0.2), while much improved
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Figure 2. A priori comparison of the normal SGS stressesτ11. (a) Correlation coefficient and (b) nondimensional rms magnitude.
, Eddy-viscosity model DEV (16)–(17); , two-coefficient mixed model DMM (18)–(19); , one-coefficient mixed

model DMM-1 (21)–(22);4 , DNS.
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Figure 3. A priori comparison of the off-diagonal SGS stressesτ12. (a) Correlation coefficient and (b) nondimensional rms magnitude.
, Eddy-viscosity model DEV (16)–(17); , two-coefficient mixed model DMM (18)–(19) and one-coefficient mixed model

DMM-1 (21)–(22);4 , DNS.
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Figure 4. Nondimensional rms magnitude ofτ11 versus filter-width att/τt = 6.5. , Eddy-viscosity model DEV (16)–(17);
, two-coefficient mixed model DMM (18)–(19); , one-coefficient mixed model DMM-1 (21)–(22);4 , DNS.

results are obtained with the mixed models. Note that the correlation coefficient for DMM and DMM-1
overlap in the figure. Figure 3(b) shows the rms ofτ12. DEV underpredicts the rms magnitude of the exact
term, while DMM and DMM-1 slightly overpredict it.

The coefficientCs remained nearly constant at a value of 0.15 throughout the calculation, consistent with
the theoretical arguments (Yoshizawa, 1986). The coefficient of the SGS energy,CI , on the other hand, has
a value three times higher than predicted by the theory, consistent with the results of Moinet al. (1991).

Figure 4 shows the rms magnitude ofτ11 versus the filter-width, at timet/τt = 6.5. For very small
filter-widths (∆/∆ = 4), all the models are accurate, reflecting the capability of dynamic models to turn off
the model contribution when the grid becomes sufficiently fine to resolve all the turbulent structures (models
with constants assigneda priori, such as the Smagorinsky (1963) model, do not have this characteristic).
For ∆/∆ = 8, consistent with the results shown above, the one-coefficient mixed model DMM gives the
most accurate predictions. For intermediate filter-widths, up to∆/∆ = 16, the best prediction is given by the
DMM-1 model; when this filter-width is used the unresolved scales contain a considerable amount of energy,
40%. For∆/∆ = 32, it appears that the DMM model predicts the rms magnitude accurately. However, since
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Figure 5. Comparison of unclosed terms in the energy equations. (a) Nondimensional terms in the internal energy or enthalpy equations
and (b) nondimensional terms in the total energy equation. , Divergence of the SGS heat flux,Cv ∂Qj/∂xj ; , SGS
viscous dissipationεv; , pressure dilatationΠdil ; , divergence of the SGS heat flux,γCv ∂Qj/∂xj ; , SGS turbulent
diffusion∂Jj/∂xj ; , SGS viscous diffusion∂Dj/∂xj .

the DMM model overpredicts the rms significantly for∆/∆ = 8 and 16, the accurate prediction given by
DMM for ∆/∆ = 32 is a coincidence. When∆/∆ = 32 the SGSs contain a large contribution from the
energy-containing eddies (70% of the energy is in the SGS); since∆/∆ = 32 is not in the inertial range the
assumptions on which LES modeling is based fail. The same results are found forτ12 (not shown).

5. Models for the Energy Equations

Figure 5 compares the magnitude of the unclosed terms appearing in the internal-energy and enthalpy
equations (4) and (5), respectively (Figure 5(a)) and in the total energy equation (Figure 5(b)). Unlike in the
mixing layer studied by Vremanet al.(1995b), in this flow the pressure dilatationΠdil is negligible, and the
viscous dissipationεv is one order of magnitude smaller than the divergence of the SGS heat flux. In the
total energy equation (6), the SGS turbulent diffusion∂Jj/∂xj is comparable with the divergence of the
SGS heat flux and the SGS viscous diffusion is one order of magnitude smaller than the other terms. In this
section several models for the more significant terms are examined.

5.1. SGS Heat Flux

The simplest approach to modeling the SGS heat fluxQj is to use an eddy-diffusivity model of the form

Qj = −ρ νT

PrT

∂T̃

∂xj
= −C∆

2
ρ |S̃|

PrT

∂T̃

∂xj
, (23)

whereC is the eddy-viscosity coefficient that can be either assigned if a model of the form (16) is used,
or computed dynamically as in (17). The turbulent Prandtl numberPrT can be also fixed or calculated
dynamically according to
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Figure 6. A priori comparison of the SGS heat fluxQj . (a) Correlation coefficient and (b) nondimensional rms magnitude. ,
Eddy-diffusivity model (23),PrT = 0.7; , eddy-diffusivity model (23), Prandtl number adjusted according to (24); , mixed
model (26)–(27);4, DNS.

PrT =
C〈TkTk〉
〈KjTj〉

, (24)

where

Tj = −∆̂
2
ρ̂ | ˘̃S| ∂

˘̃
T

∂xj
+ ∆

2
̂

ρ |S̃| ∂T̃
∂xj

, Kj =

 ρ̂uj ρT
ρ

− ρ̂uj ρ̂T

ρ̂
. (25)

A mixed model of the form

Qj = −C∆
2
ρ |S̃|

PrT

∂T̃

∂xj
+ ρ

(˜̃
ujT̃ − ˜̃uj ˜̃T) (26)

was proposed by Spezialeet al.(1988). The model coefficientsC andPrT can again be assigned or adjusted
dynamically according to (19) and

PrT = C
〈TkTk〉

〈KjTj〉 − 〈VjTj〉
, (27)

with

Vj = ρ̂

(
˘̃

˘̃uj
˘̃
T −

˘̆̃
ũj

˘̆̃
T̃

)
−

̂
ρ

(˜̃
ujT̃ − ˜̃uj ˜̃T). (28)

Figure 6(a) shows the correlation coefficient for the three models described above. Both eddy-viscosity
models overlap on the plot giving a poor correlation factor, roughly 0.2, whereas the mixed model gives a
correlation above 0.6. Both eddy viscosity models under-predict the rms of the exactQj , shown in Figure 6(b),
while the mixed model is more accurate. The mixed model maintains accuracy for all filter-widths∆/∆ ≤ 16
(Figure 7).

5.2. SGS Viscous Dissipation

The other term in the enthalpy or internal energy equations that was found to be significant in the present
flow is the viscous dissipationεv. In this section the three models proposed by Vremanet al. (1995b) are
tested:
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Figure 7. Nondimensional rms magnitude ofQj versus filter-width att/τt = 6.5. , eddy-diffusivity model (23),PrT = 0.7;
, eddy-diffusivity model (23), Prandtl number adjusted according to (24); , mixed model (26)–(27);4 , DNS.

ε(1)
v = Cε1

(
˜̃
σjiS̃ij − ˜̃σij ˜̃Sij) ; (29)

ε(2)
v = Cε2ρ q̃

3/∆, q̃2 ∼ ∆
2|S̃|2; (30)

ε(3)
v = Cε3ρ q̃

3∆, q̃2 ∼ ˜̃ukũk − ˜̃uk ˜̃uk. (31)

The first is a scale-similar model; the second and third represent the SGS dissipation as the ratio between the
cube of the SGS velocity scale,q̃, and the length scale. The velocity scale can be obtained using either the
Yoshizawa (1986) model, as in (30), or the scale-similar model as in (31). Vremanet al. (1995b) fixed the
values of the coefficients by matching the rms magnitude of the modeled and exact terms obtained from the
a priori test, and obtainedCε1 = 8,Cε2 = 1.6, andCε3 = 0.6. In the present study the dynamic procedure
will be used instead to determine the coefficients. The analog of the Germano identity for this term reads

〈
̂̃
σjiS̃ij − ρ̂σij ρ̂Sij/ρ̂ 2

〉
=
〈
E(n)

v − ε̂(n)
v

〉
, (32)

and the modeled termsε(n)
v can be given respectively by (29)–(31), while theE(n)

v are

E(1)
v = Cε1

( ˘̃
˘̃σji

˘̃
Sij −

˘̃̆
σ̃ij

˘̆̃
S̃ij

)
; (33)

E(2)
v = Cε2ρ̂ ˘̃q

3
/∆̂, ˘̃q

2 ∼ ∆̂
2| ˘̃S|2; (34)

E(3)
v = Cε3ρ̂ ˘̃q

3
/∆̂, ˘̃q

2 ∼
˘̃˘̃ui ˘̃uj −

˘̆̃
ũi

˘̆̃
ũj . (35)

Figure 8(a) shows the correlation coefficient for the three models. The scale-similar model gives the
highest correlation. The use of a velocity scale obtained from the scale-similar assumption, however, results
in improved prediction of the rms magnitude; usingq ∼ ∆|S̃| yields a significant overprediction of the rms.
The values of the coefficients obtained from the dynamic adjustment in this flow are significantly lower
than those obtained in the mixing layer by Vremanet al. (1995b). For the particular filter-width shown, we
obtainedCε1 = 2.4, andCε2 = 0.03, whileCε3 increased monotonically in time from 0.25 to 0.4. The fact
that with these values the first and third models match the rms magnitude of the exact term indicates a lack
of universality of these constants. Dynamic adjustment of the model coefficient appears to be beneficial for
this term.

The modeling of the viscous dissipation is more sensitive than the other terms to the filter-width. The
prediction accuracy deteriorates with increasing filter-width, and in this case even for∆/∆ = 16 none of
the models is particularly accurate (Figure 9).
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Figure 8. A priori comparison of the SGS viscous dissipationεv. (a) Correlation coefficient and (b) nondimensional rms magnitude.
, scale-similar model (33); , dynamic model (34); , dynamic model (35);4 , DNS.
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Figure 9. Nondimensional rms magnitude ofεv versus filter-width att/τt = 6.5. , scale-similar model (33); , dynamic
model (34); , dynamic model (35);4 , DNS.

5.3. SGS Turbulent Diffusion

The SGS turbulent diffusion∂Jj/∂xj appears in the total energy equation (6). Comte and Lesieur (1998)
did not model this term explicitly, but added it to the SGS heat flux by using an eddy-diffusivity model to
parametrize (

ρ̃Euj + p̃uj
)
−
(
ρ Ẽũj + pũj

)
= γρ

(
ũjT − ũjT̃

)
+Jj ' −

νT

PrT

∂T̃

∂xj
; (36)

with this model, however, the SGS turbulent diffusionJj , which depends mostly on the unresolved velocity
fluctuations, is modeled in terms of the temperature gradient. In an isothermal flow,Jj may be nonzero,
and, even if the temperature is not constant, there is no reason to couple a term due to mechanical energy
gradients to the temperature. A model of the form (36) effectively neglectsJj .

The only attempt to model the SGS turbulent diffusion was that by Knightet al. (1998). They argue that
ũi ' ˜̃ui and propose a model of the form

Jj ' ũkτjk. (37)
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A dynamic scale-similar model can be obtained using the generalized central moments (Germano, 1992)

τ (ui, uj) = ρ
[
ũiuj − ũiũj

]
, (38)

τ (ui, uj , uk) = ρ ũiujuk − ũiτ (uj , uk)− ũjτ (ui, uk)− ũkτ (ui, uj)− ρ ũiũj ũk. (39)

Using this notation the turbulent diffusion term can be written as

2Jj = τ (uj , uk, uk) + 2ũkτ (uj , uk), (40)

sinceτ (uj , uk) = τjk. Using this formalism, scale-similar models can be derived by approximating the
quadratic terms using the filtered velocitiesũj to replace the velocitiesuj ; for instance, one can write

τ (ui, uj) ∼ τ (ũi, ũj) ⇒ ρ
(
ũiuj − ũiũj

)
∼ ρ

( ˜̃uiũj − ˜̃ui˜̃uj) . (41)

If the proportionality constant in (41) is set to one, the scale-similar part of the mixed model (18) is obtained.
Analogously, the triple product can be written as

2Jj = τ (uj , uk, uk) + 2ũkτ (uj , uk)

' CJτ (ũj , ũk, ũk) + 2ũkτ (uj , uk)

= CJ
[
ρ ˜̃uj ũkũk − ρ ˜̃uj ˜̃uk ˜̃uk − ˜̃ujAkk − 2˜̃ukAjk] + 2ũkτjk, (42)

the last term is parametrized by the same model used in the momentum equation. The coefficientCJ can be
set using the identity

̂ρ ũj ũkũk − ρ̂ ˘̃uj ˘̃uk ˘̃uk = 2Jj − 2Ĵj , (43)

where

2Jj = CJ

[
ρ̂

˘̃
˘̃uj ˘̃uk ˘̃uk − ρ̂

˘̆̃
ũj

˘̆̃
ũk

˘̆̃
ũk −

˘̆̃
ũjBkk − 2

˘̃̆
ũkBjk

]
+ 2˘̃ukTjk,

Bjk = ρ̂

( ˘̃
˘̃uj ˘̃uk −

˘̃̆
ũj

˘̆̃
ũk

)
, (44)

to yield

CJ =

〈(
̂ρ ũj ũkũk − ρ̂ ˘̃uj ˘̃uk ˘̃uk

)
Pj −QjPj

〉
〈PkPk〉

, (45)

where

Pj =

[
ρ̂

˘̃
˘̃uj ˘̃uk ˘̃uk − ρ̂

˘̆̃
ũj

˘̆̃
ũk

˘̆̃
ũk −

˘̆̃
ũjBkk − 2

˘̃̆
ũkBjk

]

−
[
̂

ρ ˜̃uj ũkũk − ̂
ρ ˜̃uj ˜̃uk ˜̃uk − ̂̃̃

ujAkk − 2̂̃̃ukAjk
]
, (46)

Qj = 2
(

˘̃ukTjk −̂̃ukτjk
)
. (47)

Figure 10(a) shows the correlation coefficient for the two models (37) and (42) and using (21)–(22) to
modelτjk. The correlation factor is greater than 0.7 for both models, and both models overpredict slightly the
rms magnitude ofJj (Figure 10(b)). When the one-coefficient, scale-similar model is used this overprediction
is significantly reduced. Both models perform equally well for∆/∆ ≤ 16, while neither is accurate for
∆/∆ = 32.
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Figure 10. A priori comparison of the SGS turbulent diffusionJj . (a) Correlation coefficient and (b) nondimensional rms magnitude.
, knightet al.(1998); , scale-similar, one-coefficient model;4 , DNS.
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Figure 11. A priori comparison of the SGS viscous diffusionDj . (a) Correlation coefficient and (b) nondimensional rms magnitude.
, scale-similar model;4 , DNS.

5.4. SGS Viscous Diffusion

The SGS viscous diffusion∂Dj/∂xj is the smallest of the terms in the total energy equation, and is about 5%
of the divergence ofQj . No model for this term has been proposed in the literature to date. One possibility
is to parametrize it using a scale-similar model of the form
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Figure 12. A priori comparison of the sum of the SGS terms in the total energy equation (6). (a) Correlation coefficient and (b)
nondimensional rms magnitude. , Model;4 , DNS.

Dj = CD(˜̃σij ũi − ˜̃σij ˜̃ui), (48)

in which the coefficient can be obtained from

CD =

〈[
̂ρσij ρui/ρ 2− ρ̂σij ρ̂ui/ρ̂ 2

]
Rj
〉

〈RkRk〉
, (49)

where

Rl =

(
˘̃

˘̃σlk ˘̃uk −
˘̃̆
σ̃lk

˘̆̃
ũk

)
−
(
̂̃
σ̃lkũk − ̂̃̃σlk ˜̃uk) . (50)

As can be seen from Figure 11, this model gives a poor correlation and poor agreement for the prediction of
the rms magnitude. However, since the viscous diffusion is relatively small, its contribution to the total energy
spectrum does not go to the inertial range, but rather to the decaying range. In this situation the accuracy of
the model is degraded, as shown by Meneveau and Lund (1997). Thus, the scale-similar approach may still
give good predictions when this term is significant. In this particular flow, the error given by the model (or
by not using a model) may be tolerable given the small contribution that the term gives to the energy budget.

5.5. General Considerations

In addition to the term-by-term comparisons shown before, it is possible to evaluate the global accuracy of
the models by comparing the sum of the exact SGS terms and the modeled quantity, namely,

ESGS = γCvQj + 1
2Jj −Dj . (51)

The mixed model (26)–(27) was used for the SGS heat flux, the scale-similar model (44)–(45) for the SGS
turbulent diffusion, and the SGS viscous diffusion has been neglected. Figure 12(a) shows the correlation
coefficient for the exact and modeled quantities. While the individual correlations were roughly 0.6 and
0.7 for the SGS heat flux model and the SGS turbulent diffusion, respectively, the global correlation drops
just below 0.6 when considering the sum of the terms. Figure 12(b) shows the rms for both quantities. The
agreement between the exact and modeled quantities is slightly less accurate than for the SGS heat flux
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alone, Figure 6(b), but more accurate than for the SGS turbulent diffusion alone, Figure 10(b). Figure 12
shows that the overall performance is very good.

6. Conclusions

Several mixed and eddy-viscosity models for the momentum and energy equations have been tested. The
velocity, pressure, density, and temperature fields obtained from the DNS of homogeneous isotropic turbu-
lence atReλ = 50,Mt = 0.52 were filtered and the unclosed terms in the momentum, internal energy, and
total energy equations were computed.

In the momentum equation, mixed models were found to give better prediction, in terms of both correlation
and rms amplitude, than the pure eddy-viscosity models. The dynamic adjustment of the model coefficient
was beneficial, as already observed by Moinet al. (1991).

In the internal energy and enthalpy equations only the divergence of the SGS heat flux was significant in
this flow; the SGS pressure dilatationΠdil and viscous dissipationεv, which were significant in the mixing
layer studied by Vremanet al.(1995b), were found to be negligible here. Once again, mixed dynamic models
gave the most accurate results.

In the total energy equation two additional terms are present, one of which, the turbulent diffusion
∂Jj/∂xj , is significant. The model proposed by Knightet al.(1998) and a new scale-similar model proposed
here correlate well with the actual SGS turbulent diffusion, and predict the correct rms amplitude. However,
the new scale-similar model was found to be more accurate. A mixed model for the SGS viscous diffusion
was also proposed and tested, although this term is much smaller than the others. The accuracy of the models
for the sum of the terms was also evaluated, and it was found that the models proposed still predict nearly
the correct rms amplitude, and an acceptable value of the correlation coefficient.

The results obtained in this investigation are promising and indicate that it is possible to model accurately
the terms in the energy equations. Further work may extend these results to cases in which the pressure-
dilatation is significant, as well as to inhomogeneous flows, and evaluate these modelsa posteriori.
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