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We introduce a Mach 2.9, Reτ = 640, spatially developing direct numerical simulation
on a very large domain which is about 60 incoming boundary layer thicknesses long in the
streamwise direction. Using the rescaling technique of Xu & Martin,1 with the rescaling
plane taken near the exit, at about 57 incoming boundary layer thicknesses (just under
0.4 meters downstream of the inlet), we obtain a clean inflow with a good sampling of
even the largest scales. We show that the simulation can be run for long times ≥ 450δ/U∞
without the forcing of artificial acoustic modes in the free stream. We proceed to examine
the turbulence structure through spectral analysis and filtered instantaneous flow fields.
Special attention is paid to the largest structures, with turbulence modeling, especially
aspects unique to compressible boundary layers, in mind.

I. Introduction

The existence of coherent vorticle motions, or coherent structures, in boundary layers is now widely
accepted. Theodorsen2 postulated the existence of the hairpin vortex, a simple flow structure that ex-
plains the formation of low-speed streamwise streaks and the ejection of near-wall low-momentum fluid
into higher-momentum regions farther from the wall; see Figure 1(a) for a conceptual drawing. Head &
Bandyopadhyay3 provided experimental evidence of the streamwise stacking of individual hairpin vortices
into larger structures, packets, whose heads describe an envelope inclined at a 15◦ to 20◦ downstream angle
with respect to the wall. More recently, Adrian, Meinhart, & Tomkins4 proposed a hairpin packet model,
where the hairpins in a packet align in the streamwise direction as observed by Head and Bandyopadhyay.
In this model, packets enclose regions of low momentum induced by their heads and counter-rotating legs,
and align themselves in the streamwise direction giving rise to the low-momentum, very large-scale motions
(VLSM) observed by Jiménez5 and Kim & Adrian,6 see Figure 1(b). These long low-momentum streaks in
the logarithmic region have also been observed by Hutchins & Marusic,7 who call them “super structures.”
Recently Marusic and coworkers have proposed a model for the near wall streamwise fluctuations based on
the observations studying superstructures.8 This model displays remarkable Reynolds number independence
and can accurately reproduce the near wall fluctuations, spectra and high order moments using information
only obtained from the middle of the logarithmic region. In this model the presence of “super structures”
influences the near wall fluctuations through two mechanisms: amplitude modulation of the high frequencies
and superposition of the low frequency components. Figure 28 is a depiction of the low momentum streaks
and how they interact with the near wall region.

The current study of the turbulence structure in boundary layers has been confined largely to the subsonic
flow regime (Tomkins & Adrian;9 del Álamo & Jiménez;10 Ganapathisubramani, Longmire & Marusic;11 del
Álamo et al.;12 del Álamo et al.;13 Guala, Hommena & Adrian;14 Hambleton, Hutchins & Marusic;15 Flores
et al.;16 Balakumar & Adrian;17 Hutchins & Marusic7 and Mathis, Hutchins & Marusic,18 for example).
The study of supersonic and hypersonic turbulent boundary layers has been primarily restricted to simple
statistical analysis, due to the lack of detailed flow field data and the difficulty of performing experiments and
simulations in this regime. Fernholz & Finley;19,20 Spina, Donovan & Smits;21 Smits & Wood;22 Fernholz et
al.;23 and Smits & Dussauge,24 give reviews including the effects of pressure gradient, streamline curvature
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and the interaction with shock waves in high-speed turbulent boundary layers. These descriptions are
statistical and some include qualitative flow visualizations. The only structure information such as convection
velocity, angle, and length scale, has been obtained from space-time correlations (see, for example, Smits
et al.,25 Spina, Donovan & Smits,26 and Smits & Dussauge24). The results indicate changes in structure
properties with both Mach and Reynolds numbers, such as a decrease in structure length with increasing
Mach number.

Recent advances in numerical and experimental techniques allow for detailed four-dimensional, in space
and time, flow field data acquisition. Direct numerical simulations make possible the computation of turbu-
lent boundary layers at supersonic and hypersonic Mach numbers (Guarini et al.;27 Martin;28,29 Pirozzoli,
Grasso & Gatski;30 Xu & Martin;1 Ringuette, Wu & Martin31) as well as the interaction of turbulence
with strong, unsteady shock waves (Adams;32 Pirozzoli & Grasso;33 Wu & Martin;34 Wu & Martin;35 Tay-
lor, Grube & Martin;36 Grube, Taylor & Martin37). Advanced particle-image-velocimetry techniques allow
the temporal and spatial characterization of experimental supersonic turbulent boundary layers and shock
boundary layer interactions (Elsinga et al.;38Schrijer, Scarano & van Oudheusden;39 van Oudheusden;40

Humble, Scarano & van Oudheusden41). Both numerical31,34 and experimental38,42,43 data at supersonic
Mach numbers have shown evidence of VLSM.

In this paper, we present the DNS data of a turbulent boundary layer spatially developing over a length
of 57 incoming boundary layer thicknesses, i.e. nearly 0.4 meters. Data are gathered over 450 δ/U∞ time
scales. The flow configuration and computational setup are described in Section II. The quality of the data
is presented in Section III. Turbulence spectral and large-scale turbulence structure analysis are given in
Sections IV and V, respectively. Finally, conclusions are given in Section VI.

II. Flow Configuration and Computational Details

The flow configuration considered in the present work is a spatially developing, zero pressure-gradient flat
plate boundary layer over a smooth wall at Mach 2.9. The domain is quite large, especially in the streamwise
direction, with a physical length of just under 0.4 meters (381 mm). Over this distance the boundary layer
grows considerably with an initial thickness of just under 7.25 mm at the inlet to just over 13.5mm at the
outlet. The momentum thickness Reynolds number, Reθ, varies from inlet to outlet changing from just over
3000 to nearly 5000 at the exit. (Reθ = U∞θ/ν∞ where U∞ denotes the freestream velocity, ν∞ the free
stream kinematic viscosity, and θ the momentum thickness). For a diagram of the computational domain
(truncated in the wall-normal, z, direction) see Figure 3. A table outlining the grid dimensions and resolution
is given below in table 1. Here we use constant spacing in the streamwise, x, and spanwise, y, directions,
and geometric grid stretching in the wall-normal, z, direction, where z(k) = z2(αk−1 − 1)/(α− 1). The grid
spacing normalized by inner units is denoted as ∆+.

Direction: streamwise (x) spanwise (y) wall-normal (z) size

L/δ0: 59.5 4.96 9.09 70ml
grid points 2484 546 110 ≈ 150 Million

∆+ 9.24 3.51 0.263

Table 1. Grid resolution and domain size for the DNS. The grid is equispaced in the streamwise and spanwise
directions and uses a geometric stretching in the wall normal direction. Here, δ0 = 6.41mm and ∆+

z = z2 − z1

The numerical scheme used here is identical to that used and validated by Martin28,29 across multiple
Mach numbers and wall temperature conditions. We use a 4th-order accurate, weighted essentially non-
oscillatory (WENO) scheme, which has been linearly optimized.44 The optimization process reduces the
dissipation and dispersion in smooth regions by adding an additional candidate stencil and adjusting the op-
timal stencil weights, resulting in the linear portion of the scheme being symmetric and bandwidth resolving
efficiency optimized. For the spatial discretization of the viscous fluxes, 4th-order accurate central differenc-
ing is used, and time-integration is performed with a 3rd-order accurate, low-storage, explicit Runge-Kutta
algorithm. The flow is initialized following the method of Martin.29

The boundary conditions are as follows. At the wall, a no-slip, isothermal boundary condition is used.
The prescribed wall temperature is 307K, which is close to the adiabatic wall temperature. At the top
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and outlet boundaries, a supersonic exit boundary condition is used. The flow has a free stream Mach
number, M∞, of 2.91, a free stream velocity, U∞, of 610 m/s, a free stream temperature, T∞, of 109 K and
the density in the free stream, ρ∞, is 0.076 kg/m3. Periodic boundary conditions are implemented in the
spanwise direction.

The inflow boundary condition is provided by the rescaling technique outlined by Xu & Martin.1 This
method has the advantage of being relatively simple to implement, all boundary variables are appropriately
specified, and its action is well understood; we do not use any complicated reflection or shifting of the
recycling plane. In our experience, when the DNS is run for long times (of the order of several hundreds of
δ/U∞), and a rescaling length typical of those commonly found in the literature is used, say 8δ, it becomes
apparent that the rescaling forces an acoustic mode in the freestream and can be clearly seen in time series
spectra. This forcing is a narrow band phenomena at frequencies of Uc/λ0 and higher harmonics. Here Uc

is the applicable convection velocity, the local mean for instance, and λ0 is the distance between the inflow
plane and the recycling plane.

In addition to unphysical acoustic modes appearing in the free stream, the physics of the larger coherent
structures may be artificially altered if the rescaling length is not sufficiently large. Large scale structures
which convect faster, and change more slowly, are artificially reintroduced before they can sufficiently evolve.
Extending the analysis of Simens et al.,45 by invoking Morkovin’s hypothesis for compressible boundary lay-
ers, we may define an eddy evolution time scale for eddies of size O(δ). Such eddies have internal velocities of
O((ρ∞/ρw)1/2uτ ) which yields an eddy evolution time scale of (ρw/ρ∞)1/2δ/uτ . (Under Morkovin’s hypoth-
esis the dominant effects of compressibility reduce to the effects of variable fluid properties, predominantly
manifested in variable density and viscosity. For more details see Smits & Dussauge.24) Over this time
scale, eddies of size O(δ) convect with a speed of O(U∞) and will cover a distance of U∞(ρw/ρ∞)1/2δ/uτ .
For the conditions of the present simulation this large eddy evolution length scale works out to be O(12δ).
This estimation is optimistic because, as Simens notes, the true evolution time is probably closer to twice
this. Furthermore, the validity of Morkovin’s scaling—especially in the outer region of the flow and at these
DNS accessible Reynold’s numbers—is a topic of ongoing research. Using Simens’ original large eddy evolu-
tion time scale definition of δ/uτ we arrive at a necessary rescaling length of at least 20δ to enable a large
eddy to evolve sufficiently before recycling it. An alternative minimum criteria might be to have a rescaling
length, λ0 be disjoint from the wavelength support of the turbulence spectra. This ensures that there is no
turbulence energy at length scales longer than the rescaling length which would indicate the potential for
turbulence modes to have significant self-interaction. This is an extraordinarily constraining requirement,
especially at increasing Reynolds numbers, and may still be somewhat insufficient in terms of the largest
turbulent motions, or “super structures.” In light of this analysis, we use a rescaling length of 57δ0 as seen
in Figure 3 to attempt to minimize any artificial forcing from the rescaling technique. In the next section,
we show that a rescaling length of 57δ is indeed nearly disjoint from even the largest energetic turbulent
length scales, and produces no detectable rescaling mode in the turbulence spectrum.

III. Assessment of the DNS

In this section we examine the DNS data in terms of the fidelity of the simulation. The DNS code used
here has been extensively validated across a wide range Mach numbers and wall temperatures, including
those of the present study.29 We must still, however, assess the quality of the current simulation in terms of
domain size, grid convergence, and quality of inflow boundary condition.

Despite a mesh of about 150 million points, the present simulation is not grid converged. While the Cf

versus Reθ matches the van Driest II semi-empirical predictions to within ±5%, as can be seen in Figure 4,
the Van Driest transformed velocity profile (Figure 5) indicates that the log layer additive constant is 6,
well above the usual 5.2. This is indicative of excessive numerical dissipation. Despite this, we feel that the
results presented in this paper should be qualitatively correct except where noted. We are currently working
to attain grid convergence.

Next, we assess the domain size and inflow boundary condition. Since periodicity is being used in the
spanwise direction we must ensure that the domain is sufficiently wide to contain an appropriate sample of
the large structures. Below, in Figure 6, we can see that two point auto-correlations of ρu are very small at
spanwise separations of half the domain thickness for all streamwise stations. As the boundary layer grows
moving downstream so does the width of the turbulence structures, but even at a wall-normal height of
z/δ = 0.8 the correlation levels are acceptable.
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Since the rescaling plane was chosen near the outflow boundary, the domain streamwise length is sufficient
to hold a representative sample of the large scales. We focus on looking for any evidence of artificial forcing
due to the rescaling technique, examining the wave-number pressure spectrum, φpp, and the streamwise
velocity spectrum, φuu, at the rescaling station. These are plotted at various wall normal locations in
premultiplied form in Figure 7(a,b). We use Taylor’s hypothesis of “frozen” convection to convert a time series
signal into a wave number signal, taking the convection velocity, Uc, as U(z). We do this to enable better
comparisons to experiments and because it is the only effective means of extracting converged streamwise
(low) wavenumber spectra. Note that wavelength, λx, is plotted on the abscissa, rather than wave-number,
kx. The wavelength corresponding to rescaling, λ0, and it’s first harmonic are given as black vertical lines.
As we can see below in Figure 7(a,b), we have no more energy at large wave lengths than we would expect
anywhere in the boundary layer and free stream. Further more, if we examine a time series spectrogram of
φpp(St, z), where St = fδ/U∞ is the Strouhal number, we see negligible energy at the frequencies associated
with the inflow recycling as seen in Figure 8. The convergence of this figure could be better, but the
convergence is limited by the length of the simulation and the lowest frequency we wish to resolve.

An additional visual inspection, while only heuristic and qualitative, may be performed by plotting in-
stantaneous numerical schlieren visualizations of the flow at two instances in time, ta, and tb separated by
λ0/Uc. (We take Uc ≈ U∞.) Numerical schlieren is defined in equation 1.

NS = 0.8 exp
(
−10

|∇ρ| − |∇ρ|min

|∇ρ|max − |∇ρ|min

)
(1)

As can be seen in Figure 9, each eddy has evolved significantly over the period of time it takes to travel from
the inlet to the rescaling plane.

IV. Turbulence Spectra

In this section we discuss the spectral analysis of the flow field, all of which is performed at the rescaling
plane, where the von Kármán number, Reτ , is 640. The form of the turbulence spectra for compressible
boundary layers is essentially still unverified, save for a few experiments and simulations, although theo-
retical arguments for incompressible boundary layers can be extended to compressible ones via Morkovin’s
hypothesis.24 One such experimental study in which turbulence spectra are measured is that of Elsinga et
al.,38 another is the Ph.D. thesis of Spina.46 Such experiments are often limited by either relatively low
Mach numbers or difficulties taking measurements. Additionally, numerical simulations are hindered by in-
sufficient separation of scales. While the present study is conducted at a relatively high Reynolds number for
DNS, especially for compressible flow, there may still be insufficient separation of scales to allow a definitive
investigation of power law behavior. While a fairly convincing, if somewhat noisy, k−1 region may be seen in
Figure 10, there is no evidence of a k−5/3 inertial subrange, as expected. This is due to insufficient separation
of scales. A compelling k−5/3 inertial subrange was observed by Spina46 at the same Mach number as the
present study, but at a considerably higher Reynolds number.

Despite the moderate Reynolds number of the current simulation, spectral analysis can still be of use,
especially for gaining physical insight to be used in developing turbulence models and scaling arguments, and
for assessing present modeling approaches. Below, in Figure 11, we can see the significant difference that the
appropriate density scaling makes in the turbulence spectrum. In the left figure, (a), a spectrogram of the
streamwise velocity is given in premultiplied form, and in the right figure, (b), the premultiplied spectrum is
scaled by the density at that wall normal location. Note again that the scale is linear and arbitrary; plotting
in this fashion highlights the relative energy at each length scale and wall normal location. The density
scaling has the effect of emphasizing the energy in the logarithmic region, at larger wavelengths, consistent
with findings in incompressible boundary layers.7

The isotropy of the small scales can be assessed using spectral analysis. Near the wall isotropy is
not expected, since the no penetration condition constrains the wall normal fluctuations. In contrast, in
the logarithmic region, if we have a sufficient separation of scales, then the small scales will be isotropic.
In Figure 12 we have plotted an analogue to the anisotropy ratio, wrms/urms and vrms/urms, in a scale
decomposed fashion, the anisotropy spectrum, φww/φuu and φvv/φuu respectively. Ratios of 1, green on the
color map, represent areas of near isotropy, while values near zero, blue, represent regions dominated by
streamwise fluctuations and values much greater than one, red, represent areas dominated by wall-normal
or spanwise fluctuations. In the logarithmic region between z+ = 30 and z+ = 90 we might expect that
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the smallest scales are isotropic. As we can see in Figure 12 there is indeed a tendency towards isotropy for
length scales on the order of ten viscous length scales or less, although the very smallest scales seem to have
an imbalance between the streamwise and wall normal components. Again this could be due to insufficient
separation of scales or the grid convergence issues noted above in § III. Additionally, in Figure 12(a), we
can see the influence of the wall, or the “splat” effect, clearly; at almost all scales energy in wall-normal
fluctuations is dominated by the energy in the streamwise fluctuations very near the wall.

Next, we examine the contributions to the dominant Reynolds stress, −ρu′w′ at different scales and
at different locations within the boundary layer. Again we may assume a Morkovin type scaling and say
−ρu′w′ ≈ −ρu′w′. We examine contributions to this quantity using the coherence of streamwise and wall-
normal velocity fluctuations and their phase. The coherence of two quantities, a and b, coh(a, b) = γ2

ab, is
given in equation 2 where φab is the cross power spectral density.

γ2
ab =

|φab|2
|φaa||φbb| (2)

The phase is computed as θab = arg(φab).
As can be seen in Figure 13(a) the u′, w′ coherence is moderate to very low at small length scales,

but the larger length scales, those potentially associated with the near wall streaks at z+ = 12 and those
associated with the larger eddies of size O(δ) in the log and outer region of the flow contribute the most to
the dominant stress. There is, however, one notable exception to this in the region very close to the wall,
which achieves the highest level of coherence. This might be due again to the presence of the wall, or the
“splat” effect. This near wall region should be quite quiescent and have little energy, and behave nearly as
if it were incompressible since the local Mach number is very low. Thus, on the occasion that a wall-normal
fluctuation develops in this near wall region, by the incompressible continuity equation for the instantaneous
fluctuating quantities, equation 3, these wall-normal velocity fluctuations are transferred to the streamwise
and spanwise components very near the wall.

∂u′

∂x
+

∂v′

∂y
+

∂w′

∂z
= 0 (3)

The phase plot, Figure 13(b), tells a similar story: It is primarily the scales of O(δ) that contribute to the
broadband negativity of u′w′. The white, black, and dark blue regions of Figure 13(b) indicate a phase of π
between u′ and w′, meaning that when u′ is positive w′ is negative (a sweep event) and when u′ is negative
w′ is positive (an ejection event). Thus it is predominantly the larger, coherent scales that contribute to the
dominant Reynolds stress. Regions where θuw is between −π/2 and π/2 only correspond to small length
scales, where there is little to no coherence indicating that these are the incoherent, noisy motions.

Next we turn our attention to the Strong Reynolds Analogy phase relationship. Morkovin postulated that
the correlation coefficient of streamwise velocity fluctuations and temperature fluctuations should be nearly
perfectly anti-correlated for a compressible boundary layer over a perfectly thermally insulating, smooth flat
plate.24 In Figure 14(a), we plot the coherence of these fluctuations, γ2

uT . Again, like the Reynolds stresses,
the largest values of coherence happen for length scales of O(δ) and greater, and the level of coherence
is nearly one in this region. Therefore these fluctuations are highly synchronized at large wavelengths as
expected from theory and previous studies. Again, as in Figure 13(a), there is some evidence of a wall
constrained “splat” region of high coherence very near the wall, and at small length scales. This region
particularly stands out when we look at the phase, θuT , which is almost identically π every where in the flow
except this region and in the noisy, small length scales in the outer portion of the boundary layer. In this
near wall region the θuT is nearly zero, meaning that positive streamwise velocity fluctuations correspond to
positive temperature fluctuations. From Figure 13(b) we know that we are still in a “sweep–ejection” regime
and that streamwise fluctuations and wall normal fluctuations should have opposite signs. This implies that
θuT ≈ 1 can be attributed to either or both of two factors: The mean temperature gradient has changed signs
in this region, or these velocity fluctuations result in significant fluctuations in viscous heating in this region.
Since we are using an isothermal wall condition which is slightly colder than the adiabatic wall temperature
we assume that this effect is due primarily to the change in sign of the mean temperature gradient very near
the wall.
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V. Large Coherent Structures

The recent work by Hutchins and Marusic;7 Mathis, Hutchins and Marusic;18 and Marusic, Mathis and
Hutchins8 has demonstrated the role that qualitative information about the coherent turbulent motions can
lead to quantitative modeling approaches. As is evident in Figure 11 the present simulation is conducted at a
Reynolds number too low to observe second peak occurring at the middle of the log layer in the spectrogram,
thought to be the signature of “super structures.” Never the less we may still observe the interaction of
hairpin packets, to assess the validity of the VLSM model of Adrian and coworkers,4 and investigate the
impact of the coherent structures on the wall, or their “foot print.”

One approach to investigate the relationship between hairpin packets and “super structures” is the
geometric packet finding algorithm of Ringuette, Wu and Martin,31 which is briefly summarized here. The
algorithm scans (x, z) planes for ideal packets conforming geometrically to the model of Adrian, Meinhart,
& Tomkins.4 Specifically, it searches for hairpin head, or transverse, vortices that are spaced close to one
another (≤ 0.5δ) in the streamwise direction and are arranged in a ramp-like formation with a small (≤ 45◦)
downstream angle relative to the wall. The head vortices are identified using a threshold of the spanwise
vorticity, ωy, and the swirling strength, λci,47 such that λci must be greater than or equal to 4.5λci, where the
over-bar indicates the mean, and ωy is greater than or equal to 2 standard deviations from the mean; only the
region between the buffer layer (z+ = 30) and the boundary layer edge is considered for both computing the
threshold quantities and finding hairpin packets. The algorithm has provisions for handling relatively large
(wall-normal height > 0.1δ, streamwise distance > 0.1δ) structures that are occasionally identified by the
thresholds, such as hairpin legs. The scheme checks whether or not a head vortex is above the leg, and does
not consider the structure if no head is found. A further refinement of the algorithm, implemented in the
current version, performs a least-squares-fit through the identified points of these large structures, and rejects
the structure outright if the angle of the line is less than 25◦. This removes the tendency of the algorithm
to occasionally accept large, relatively horizontal shear layers with high ωy or λci as hairpin heads. The
average packet properties determined using the algorithm before and after this improvement, however, show
little change; the refinement is useful primarily for instantaneous visualizations. Figure 15, from Ringuette,
Wu, and Martin,31 shows the results of this algorithm. Sub-figure (a) shows a three dimensional hairpin
vortex packet found in a simulation at nearly matching conditions, and (b) shows a slice from the translucent
plane highlighted in (a) with contours of spanwise vorticity. Boxes enclose the hairpin vortex heads found
automatically by this algorithm. Finally, sub-figure (c) shows ticks, at two spanwise locations, indicating
where hairpin packets were found. It is evident from this figure that hairpin packets do indeed align in the
streamwise direction, giving rise to the “super structures.”

Another approach to qualitatively and quantitatively observe hairpin packets, and their affect on the
wall is the correlation method of Brown and Thomas. Brown & Thomas48 identified the average large-scale
coherent structure in the boundary layer associated with the unsteady signature of the wall shear stress, τw,
by correlating τw at a single reference location with u at different wall-normal distances. Correlation profiles
were constructed by varying the streamwise separation of u and τw, ∆x, both by converting time into distance
using Taylor’s hypothesis of ‘frozen convection’ and physically shifting the streamwise measurement locations
of u. They observed that the correlations peak at an increasing downstream distance with increasing wall-
normal location, indicating a downstream-leaning coherent structure. Brown & Thomas48 proposed that,
if such a structure existed, then conditionally averaging the correlations on data traces that contained the
structure would produce correlations of the same shape but with higher magnitudes, which they called
‘enhanced’ correlations. Their criterion used for the conditional averaging was that the correlation at z/δ =
0.25 be greater than twice the peak value at the ∆x location of the peak, indicating a ‘strong’ event such as a
turbulent burst in the lower part of the boundary layer. Using this conditional method, they found stronger
correlations of the same shape, which provided evidence of a ramp-like coherent structures in the boundary
layer. Since we have access to the entire flow field we can plot contours of this correlation coefficient, Ru,τw

in streamwise, wall-normal planes, and streamwise, spanwise planes, rather than 1 dimensional hot-wire
traces. These correlation contours, like traditional two point velocity contours, give rise to evidence of three
dimensional, down-stream leaning structures as can be seen in Figure 16. Further, this implies that the
wall shear stress is dominated by such coherent structures. Iso-contours of this correlation coefficient can be
thought of as regions of low momentum fluid encapsulated by hairpin like vortices. Counter rotating vortices
near the wall, or hairpin legs, give rise to ejection events along the centerline of the streamwise, spanwise
Ru,τw plane, causing a reduction in shear stress and transport of low momentum fluid away from the wall,
causing positive Ru,τw . On the outside of the counter rotating hairpin legs sweep events cause an increase
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in streamwise velocity while the shear stress, still being measured in the middle of the packet has a positive
fluctuation, giving rise to negative Ru,τw

. Additionally the spanwise aligned hairpin head also contributes
to negative momentum fluctuations along the centerline.

These descriptions of hairpin packets, from the geometric analysis, the Brown and Thomas correlations,
and the VLSM model of Kim and Adrian inspired an additional concept for investigating the relationship
between the long low momentum streaks in the log layer, and the hairpin packets. We designed a two
dimensional finite impulse response (FIR) filter using a anisotropic, bivariate Gaussian distribution with zero
cross correlation to remove fluctuations which are smaller than hairpin packets. The filter removes 99.9% of
energy at streamwise wavenumbers higher than kx ≈ 2π/(5δ0) and 99.9% of energy at spanwise wavenumbers
of ky ≈ 2π/(0.65δ0). This filter is visualized to scale, next to the Brown and Thomas correlations in
Figure 16(c).

We then applied this filter to two regions, streamwise momentum fluctuations in the middle of the
logarithmic layer, and shear stress fluctuations at the wall. We hypothesized that if we apply this filter to
momentum fluctuations in the log region we will select the meandering superstructures if they are indeed
composed of hairpin packets. As can be seen in Figure 17(a,b) we can see that this is the case and we may
even identify individual strong hairpin packets where this filtered field reaches local maxima. Figure 17(c,d)
shows the wall shear stress with the same filter applied to it. Again we see long meandering regions with an
almost perfect one to one correspondence with the log-layer “super structures.” Figure 17 is evidence that
superstructures do indeed have an important effect on the near wall cycle and drag production.

VI. Conclusions

We have shown, through spectral analysis and quantitative and qualitative techniques based on instanta-
neous time realizations, the strong dynamic influence of the largest structures. The large scales show strong
contributions to the Reynolds shear stress, as well as the strong Reynolds analogy phase relationship between
temperature and streamwise velocity fluctuations. Furthermore, at this Reynolds number and Mach num-
ber we present evidence that the “super structures” are due to streamwise aligned hairpin vortex packets,
and that they contribute significantly to the near wall cycle, the wall shear stress, and thus the turbulence
dynamics.

While the demands to accurately simulate the largest flow structures at these Reynolds numbers are
stringent they are attainable. The present simulation is not entirely grid converged, but qualitative and
some quantitative conclusions may still be drawn. Additionally, when undertaking an investigation of the
large scale structures special attention should be paid to the inflow boundary condition if these are to
accurately simulated.
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(a) Theodorsen’s hairpin vortex.2 The arrows on
either side of the hairpin indicate the direction of
the flow.

(b) Very large scale motion model of Adrian et al.4

in which hairpin packets align to produce the long,
low-momentum streaks in the logarithmic layer.

Figure 1. Coherent boundary layer structures. Figures from Theodorsen2 and Adrian et al.4

Figure 2. Conceptual drawing of “super-structures” in a turbulent boundary layer from Marusic et al.8
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Figure 3. Computational domain for the DNS, truncated in the z direction. Flow is from left to right. The
rescaling and inflow planes have been highlighted.

Figure 4. Cf vs Reθ and ±5% of the Van Driest II semi-empirical predictions. Each symbol represents an
instant in time.
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Figure 5. Van Driest-transformed velocity profile at various streamwise locations.

Figure 6. Two-point auto-correlations as a function of spanwise separation taken at various streamwise locations
in the outer region of the boundary layer.
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Figure 7. Premultiplied pressure and streamwise velocity spectrum at various wall normal locations. Wave-
number spectrum obtained using Taylor’s hypothesis. Arbitrary, linear scale.

Figure 8. Premultiplied pressure spectrogram, linear, arbitrary-scale color map.
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(a)

(b)

Figure 9. Two numerical schlieren (equation 1) images taken in the same streamwise, wall-normal plane at
two instances in time, separated by about ∆ta,b = tb − ta ≈ λ0/U∞, the rescaling convective time scale.
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Figure 10. Log-log plot of the streamwise velocity power spectral density taken from the middle of the
logarithmic layer. The k−1 region appears convincing, but the inertial subrange appears to small to see
evidence of a k−5/3 region. The lack of a k−5/3 region may be due to the lack of grid convergence which is
providing unphysical dissipation, at scales larger than the true dissipative turbulent length scales.
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(a) (b)

Figure 11. Premultiplied streamwise velocity wave-number spectrogram. Arbitrary, linear color map used for
both, but the right hand plot is scaled the local density.

(a) (b)

Figure 12. Anisotropy spectrum. Left: w, right: v.

(a) (b)

Figure 13. The dominant Reynolds stress, u′w′. Left: coherence. Right: phase.

15 of 18

American Institute of Aeronautics and Astronautics



(a) (b)

Figure 14. Strong Reynolds Analogy phase relation, u′T ′. Left: Coherence, Right: phase.

(a) Hairpin Packet conforming to the model of

Adrian4 found in a Mach 2.9 boundary layer
using the automated algorithm of Ringuette,
Wu & Martin. See Figure 1(b)

(b) A slice from (a) showing contours of spanwise vorticity, with
boxes highlighting the hairpin vortex heads.

(c) Tickmarks indicating the presence of hairpin vortex packets found by searching two streamwise, wall-normal

planes (indicated by the black lines) overlaying contours of streamwise velocity deficit in the lagarithmic layer.

Figure 15. Figures reproduced from Ringuette, Wu & Martin31 conducted at the same Mach number, and
slightly lower Reynolds number.
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(a)

(b)

(c)

Figure 16. Contours of Brown &Thomas correlations, Ru′,τ ′w in the (a) streamwise, wall-normal plane and

(b) streamwise, spanwise plane. (c) plots a two dimensional finite impulse response filter generated with a
bivariate Gaussian distribution to filter out noisy fluctuations which have geometries smaller than a hairpin
packet.
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Figure 17. (a) unfiltered and (b) filtered streamwise momentum fluctuations in the middle of the logarithmic
layer. (c) filtered and (d) unfiltered wall shear stress fluctuations. All filtering was done with the filter shown
in Figure 16(c).
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